Studia Logica

, Volume 101, Issue 2, pp 367–397 | Cite as

Epistemic Operators in Dependence Logic

  • Pietro Galliani


The properties of the \({\forall^{1}}\) quantifier defined by Kontinen and Väänänen in [13] are studied, and its definition is generalized to that of a family of quantifiers \({\forall^{n}}\). Furthermore, some epistemic operators δ n for Dependence Logic are also introduced, and the relationship between these \({\forall^{n}}\) quantifiers and the δ n operators are investigated.

The Game Theoretic Semantics for Dependence Logic and the corresponding Ehrenfeucht- Fraissé game are then adapted to these new connectives.

Finally, it is proved that the \({\forall^{1}}\) quantifier is not uniformly definable in Dependence Logic, thus answering a question posed by Kontinen and Väänänen in the above mentioned paper.


Epistemic operators Uniform definability Dependence logic Imperfect information Announcements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, Samson, and Jouko Väänänen, From IF to BI, a tale of dependence and separation, 2008. ILLC Publications, PP–2008–27.Google Scholar
  2. 2.
    Benthem, Johan van, The epistemic logic of IF games, in R.E. Auxier, and L.E. Hahn, (eds.), The Philosophy of Jaakko Hintikka, vol. 30 of Library of living philosophers, chap. 13, Open Court Publishers, 2006, pp. 481–513.Google Scholar
  3. 3.
    Benthem, Johan van, and Maricarmen Martinez, The stories of logic and information, in P. Adriaans, J. van Benthem, D. Gabbay, P. Thagard, and J. Woods, (eds.), Philosophy of Information (Handbook of the Philosophy of Science), Elsevier, Amsterdam, 2008, pp. 217–280.Google Scholar
  4. 4.
    Burgess John: A remark on Henkin sentences and their contraries. Notre Dame Journal of Formal Logic 3(44), 185–188 (2003)CrossRefGoogle Scholar
  5. 5.
    Caicedo Xavier, Dechesne Francien, Theo Jannsen: Equivalence and Quantifier Rules for Logic with Imperfect Information. Logic Journal of the IGPL 17(1), 91–129 (2009)CrossRefGoogle Scholar
  6. 6.
    Galliani, Pietro, Game Values and Equilibria for Undetermined Sentences of Dependence Logic, 2008. MSc Thesis. ILLC Publications, MoL–2008–08.Google Scholar
  7. 7.
    Galliani, Pietro, Epistemic operators and uniform definability in dependence logic, in Juha Kontinen, and Jouko Väänänen, (eds.), Proceedings of Dependence and Independence in Logic, ESSLLI 2010, 2010, pp. 4–29.Google Scholar
  8. 8.
    Henkin, Leon, Some Remarks on Infinitely Long Formulas, in Infinitistic Methods. Proc. Symposium on Foundations of Mathematics, Pergamon Press, 1961, pp. 167– 183.Google Scholar
  9. 9.
    Hintikka, Jaakko, The Principles of Mathematics Revisited, Cambridge University Press, 1996.Google Scholar
  10. 10.
    Hintikka, Jaakko, and Gabriel Sandu, Informational independence as a semantic phenomenon, in J.E Fenstad, I.T Frolov, and R. Hilpinen, (eds.), Logic, methodology and philosophy of science, Elsevier, 1989, pp. 571–589.Google Scholar
  11. 11.
    Hodges Wilfrid: Compositional Semantics for a Language of Imperfect Information. Journal of the Interest Group in Pure and Applied Logics 5(4), 539–563 (1997)Google Scholar
  12. 12.
    Janssen Theo: Independent Choices and the Interpretation of IF Logic. Journal of Logic, Language and Information 11, 367–387 (2002)CrossRefGoogle Scholar
  13. 13.
    Kontinen Juha, Väänänen Jouko: On definability in dependence logic. Journal of Logic, Language and Information 3(18), 317–332 (2009)CrossRefGoogle Scholar
  14. 14.
    Kontinen, Juha, and Jouko Väänänen, A Remark on Negation of Dependence Logic, Notre Dame Journal of Formal Logic 52(1):55–65, 2011.Google Scholar
  15. 15.
    Tulenheimo, Tero, Independence Friendly Logic, Stanford Encyclopedia of Philosophy, 2009.Google Scholar
  16. 16.
    Väänänen, Jouko, Dependence Logic, Cambridge University Press, 2007.Google Scholar
  17. 17.
    Väänänen, Jouko, Team Logic, in J. van Benthem, D. Gabbay, and B. Löwe, (eds.), Interactive Logic. Selected Papers from the 7th Augustus de Morgan Workshop, Amsterdam University Press, 2007, pp. 281–302.Google Scholar
  18. 18.
    Venema, Yde, Cylindric modal logic, Journal of Symbolic Logic 60:591–623, 1995.Google Scholar
  19. 19.
    Yang, Fan, Expressing second-order sentences in intuitionistic dependence logic, in Juha Kontinen, and Jouko Väänänen, (eds.), Proceedings of Dependence and Independence in Logic, ESSLLI 2010, 2010, pp. 118–132.Google Scholar
  20. 20.
    Zermelo, Ernst, Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels, in Proceedings of the Fifth Congress of Mathematicians, vol. 2, Cambridge University Press, 1913, pp. 501–504.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute for Logic, Language and ComputationUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations