Studia Logica

, Volume 100, Issue 4, pp 705–725

Inclusion and Exclusion in Natural Language

Article

Abstract

We present a formal system for reasoning about inclusion and exclusion in natural language, following work by MacCartney and Manning. In particular, we show that an extension of the Monotonicity Calculus, augmented by six new type markings, is sufficient to derive novel inferences beyond monotonicity reasoning, and moreover gives rise to an interesting logic of its own. We prove soundness of the resulting calculus and discuss further logical and linguistic issues, including a new connection to the classes of weak, strong, and superstrong negative polarity items.

Keywords

Surface reasoning Logic and grammar Exclusion relations Polarity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barwise J., Cooper R.: Generalized quantifiers and natural language. Linguistics and Philosophy 4, 159–219 (1981)CrossRefGoogle Scholar
  2. 2.
    van Benthem J.: Essays in Logical Semantics. Reidel, Dordrecht (1986)CrossRefGoogle Scholar
  3. 3.
    van Benthem J.: Language in Action. North Holland, Amsterdam (1991)Google Scholar
  4. 4.
    van Benthem, J., Natural logic: a view from the 1980’s, in M. K. Chakraborty et al. (eds.), Logic, Navya-Nyāya and Applications, College Publications, London, 2008.Google Scholar
  5. 5.
    Giannakidou, A., Negative and positive polarity items, in C. Maienborn, K. von Heusinger, and P. Portner (eds.), Semantics: An International Handbook of Natural Language Meaning, Mouton de Gruyter, 2011.Google Scholar
  6. 6.
    Hoeksema J.: Negative polarity and the comparative. Natural Language and Linguistic Theory 1, 403–434 (1983)CrossRefGoogle Scholar
  7. 7.
    Ladusaw, W., Polarity Sensitivity as Inherent Scope Relations, Ph.D. Dissertation, University of Texas Austin, 1979.Google Scholar
  8. 8.
    MacCartney, B., Natural Language Inference, Ph.D. Dissertation, Stanford University, 2009.Google Scholar
  9. 9.
    MacCartney, B., and C. D. Manning, Modeling semantic containment and exclusion in natural language inference, The 22nd International Conference on Computational Linguistics (Coling-08), Manchester, 2008.Google Scholar
  10. 10.
    MacCartney, B., and C. D. Manning, An extended model of natural logic, Proceedings of the Eighth International Conference on Computational Semantics, 2009.Google Scholar
  11. 11.
    Moss, L. S., Logics for Natural Language Inference, ESSLLI 2010 Course Notes.Google Scholar
  12. 12.
    Moss, L. S., The Soundness of Internalized Polarity Marking, Studia Logica 100(4):683–704, 2012. (this issue)Google Scholar
  13. 13.
    Sánchez, V., Studies on Natural Logic and Categorial Grammar, Ph.D. Dissertation, Universiteit van Amsterdam, 1991.Google Scholar
  14. 14.
    Suppes P.: Logical inference in English. Studia Logica 38(4), 375–391 (1979)CrossRefGoogle Scholar
  15. 15.
    Zamansky A., Francez N., Winter Y.: A ’natural logic’ inference system using the Lambek Calculus. Journal of Logic, Language, and Information 15(3), 273–295 (2006)CrossRefGoogle Scholar
  16. 16.
    Zwarts, F., Three types of polarity, in F. Hamm and E. Hinrichs (eds.), Plurality and Quantification, Kluwer, 1998.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of PhilosophyStanford UniversityStanfordUSA

Personalised recommendations