Studia Logica

, Volume 101, Issue 5, pp 1073–1092 | Cite as

Information Completeness in Nelson Algebras of Rough Sets Induced by Quasiorders

  • Jouni Järvinen
  • Piero Pagliani
  • Sándor Radeleczki


In this paper, we give an algebraic completeness theorem for constructive logic with strong negation in terms of finite rough set-based Nelson algebras determined by quasiorders. We show how for a quasiorder R, its rough set-based Nelson algebra can be obtained by applying Sendlewski’s well-known construction. We prove that if the set of all R-closed elements, which may be viewed as the set of completely defined objects, is cofinal, then the rough set-based Nelson algebra determined by the quasiorder R forms an effective lattice, that is, an algebraic model of the logic E0, which is characterised by a modal operator grasping the notion of “to be classically valid”. We present a necessary and sufficient condition under which a Nelson algebra is isomorphic to a rough set-based effective lattice determined by a quasiorder.


Rough sets Nelson algebras Quasiorders (preorders) Knowledge representation Boolean congruence Glivenko congruence Logics with strong negation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akama, S., Presupposition and frame problem in knowledge bases, in F. M. Brown (ed.), The Frame Problem in Artificial Intelligence, Kaufmann, Los Altos, CA, 1987, pp. 193–203.Google Scholar
  2. 2.
    Barwise J., Perry J.: Situations and Attitudes. MIT Press, Cambridge, MA (1983)Google Scholar
  3. 3.
    Blyth T.S.: Lattices and Ordered Algebraic Structures. Springer, London (2005)Google Scholar
  4. 4.
    Cignoli R.: The class of Kleene algebras satisfying an interpolation property and Nelson algebras. Algebra Universalis 23, 262–292 (1986)CrossRefGoogle Scholar
  5. 5.
    Gabbay D.M.: Labelled Systems. Oxford University Press, Oxford (1997)Google Scholar
  6. 6.
    Girard J.-Y.: On the unity of logic. Annals of Pure and Applied Logic 59, 201–217 (1993)CrossRefGoogle Scholar
  7. 7.
    Greco, S., B. Matarazzo, and R. Słowinski, Data mining tasks and methods: Classification: multicriteria classification, in W. Klösgen and J.  Zytkow (eds.), Handbook of Data Mining and Knowledge Discovery, Oxford University Press, Oxford, 2002, pp. 318–328.Google Scholar
  8. 8.
    Iturrioz, L., Rough sets and three-valued structures, in E. Orłowska (ed.), Logic at Work: Essays Dedicated to the Memory of Helena Rasiowa, Physica-Verlag, Heidelberg, 1999, pp. 596–603.Google Scholar
  9. 9.
    Järvinen, J., Lattice theory for rough sets, Transactions on Rough Sets VI:400–498, 2007.Google Scholar
  10. 10.
    Järvinen, J., P. Pagliani, and S. Radeleczki, Atomic information completeness in generalised rough set systems, Extended Abstracs of the 3rd International Workshop on Rough Set Theory (RST11) 14–16 September 2011, Milano, Italy.Google Scholar
  11. 11.
    Järvinen J., Radeleczki S.: Representation of Nelson algebras by rough sets determined by quasiorders. Algebra Universalis 66, 163–179 (2011)CrossRefGoogle Scholar
  12. 12.
    Järvinen J., Radeleczki S., Veres L.: Rough sets determined by quasiorders. Order 26, 337–355 (2009)CrossRefGoogle Scholar
  13. 13.
    Kreisel G., Putnam H.: Eine unableitbarkeitsbeweismethode für den Intuitionistischen Aussegenkalkül. Archiv für Mathematische Logik und Grundlagenferschung 3, 74–78 (1957)CrossRefGoogle Scholar
  14. 14.
    Medvedev, Y. T., Finite problems, Soviet Mathematics, Doklady 3:227–230, 1962 (Doklady Academii Nauk SSSR 142:1015–1018, 1962, in Russian).Google Scholar
  15. 15.
    Miglioli P., Moscato U., Ornaghi M., Quazza S., Usberti G.: Some results on intermediate constructive logics. Notre Dame Journal of Formal Logic 30, 543–562 (1989)CrossRefGoogle Scholar
  16. 16.
    Miglioli P., Moscato U., Ornaghi M., Usberti G.: A constructivism based on classical truth. Notre Dame Journal of Formal Logic 30, 67–90 (1989)CrossRefGoogle Scholar
  17. 17.
    Nagarajan, E., and D. Umadevi, A method of representing rough sets system determined by quasi orders, Order in print. doi:10.1007/s11083-011-9245-x.
  18. 18.
    Nelson D.: Constructible falsity. Journal of Symbolic Logic 14, 16–26 (1949)CrossRefGoogle Scholar
  19. 19.
    Pagliani P.: Remarks on special lattices and related constructive logics with strong negation. Notre Dame Journal of Formal Logic 31, 515–528 (1990)CrossRefGoogle Scholar
  20. 20.
    Pagliani, P., A pure logic-algebraic analysis of rough top and rough bottom equalities, in Proceedings of the International Conference on Rough Sets and Knowledge Discovery, Banff, 1993, pp. 227–236.Google Scholar
  21. 21.
    Pagliani P.: Rough sets and Nelson algebras. Fundamenta Informaticae 27, 205–219 (1996)Google Scholar
  22. 22.
    Pagliani, P., Rough set systems and logic-algebraic structures, in E. Orłowska (ed.), Incomplete Information: Rough Set Analysis, Physica-Verlag, Heidelberg, 1998, pp. 109–190.Google Scholar
  23. 23.
    Pagliani P., Chakraborty M.: A Geometry of Approximation, Rough Set Theory, Logic, Algebra and Topology of Conceptual Patterns. Springer, Heidelberg (2008)Google Scholar
  24. 24.
    Pawlak Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)CrossRefGoogle Scholar
  25. 25.
    Rasiowa H.: An Algebraic Approach to Non-classical Logics. North-Holland, Amsterdam (1974)Google Scholar
  26. 26.
    Sendlewski A.: Nelson algebras through Heyting ones I. Studia Logica 49, 105–126 (1990)CrossRefGoogle Scholar
  27. 27.
    Stone A.H.: On partitioning ordered sets into cofinal subsets. Mathematika 15, 217–222 (1968)CrossRefGoogle Scholar
  28. 28.
    Vakarelov D.: Notes on N-lattices and constructive logic with strong negation. Studia Logica 36, 109–125 (1977)CrossRefGoogle Scholar
  29. 29.
    Vickers S.: Topology Via Logic. Cambridge University Press, Cambridge (1989)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jouni Järvinen
    • 1
  • Piero Pagliani
    • 2
  • Sándor Radeleczki
    • 3
  1. 1.TurkuFinland
  2. 2.Research Group on Knowledge and Communication ModelsRomaItaly
  3. 3.Institute of MathematicsUniversity of MiskolcMiskolc-EgyetemvárosHungary

Personalised recommendations