Studia Logica

, Volume 101, Issue 5, pp 1031–1060 | Cite as

Inverse Images of Box Formulas in Modal Logic



We investigate, for several modal logics but concentrating on KT, KD45, S4 and S5, the set of formulas B for which \({\square B}\) is provably equivalent to \({\square A}\) for a selected formula A (such as p, a sentence letter). In the exceptional case in which a modal logic is closed under the (‘cancellation’) rule taking us from \({\square C \leftrightarrow \square D}\) to \({C \leftrightarrow D}\), there is only one formula B, to within equivalence, in this inverse image, as we shall call it, of \({\square A}\) (relative to the logic concerned); for logics for which the intended reading of “\({\square}\) ” is epistemic or doxastic, failure to be closed under this rule indicates that from the proposition expressed by a knowledge- or belief-attribution, the propositional object of the attitude in question cannot be recovered: arguably, a somewhat disconcerting situation. More generally, the inverse image of \({\square A}\) may comprise a range of non-equivalent formulas, all those provably implied by one fixed formula and provably implying another—though we shall see that for several choices of logic and of the formula A, there is not even such an ‘interval characterization’ of the inverse image (of \({\square A}\)) to be found.


Modal logics Inverses of modal operators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balbiani, P., I. Shapirovsky, and V. Shehtman, Every world can see a Sahlqvist world, in G. Governatori, I. Hodkinson and Y. Venema (eds.), Advances in Modal Logic, Volume 6, College Publications, London, 2006, pp. 69–85.Google Scholar
  2. 2.
    van Benthem J., Humberstone L.: Halldén-completeness by gluing of Kripke frames, Notre Dame Journal of Formal Logic 24, 426–430 (1983)CrossRefGoogle Scholar
  3. 3.
    Castañeda H.-N.: “He”: a study in the logic of self-consciousness, Ratio 8, 130–157 (1966)Google Scholar
  4. 4.
    Chellas B.F.: Modal Logic: An Introduction, Cambridge University Press, Cambridge (1980)CrossRefGoogle Scholar
  5. 5.
    Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi, Reasoning About Knowledge, MIT Press, Cambridge, MA 1995. Paperback edition, revised: 2003.Google Scholar
  6. 6.
    Fitch F.B.: A logical analysis of some value concepts, Journal of Symbolic Logic 28, 135–142 (1963)CrossRefGoogle Scholar
  7. 7.
    Geach, P. T., Reference and Generality, Emended edition, Cornell University Press, Ithaca, NY, 1968. First edition 1962.Google Scholar
  8. 8.
    Green, M., Williams, J.N. (eds.), Moore’s Paradox: New Essays on Belief, Rationality, and the First Person, Oxford University Press, Oxford (2007)Google Scholar
  9. 9.
    Halbach V.: On a side effect of solving Fitch’s paradox by typing knowledge, Analysis 68, 114–120 (2008)Google Scholar
  10. 10.
    Halpern J.Y.: Should knowledge entail belief?, Journal of Philosophical Logic 25, 483–494 (1996)CrossRefGoogle Scholar
  11. 11.
    Hazen, A. P., The myth of the intuitionistic “Or”, in J. M. Dunn and A. Gupta (eds.), Truth or Consequences: Essays in Honor of Nuel Belnap, Kluwer, Dordrecht, 1990, pp. 177–195.Google Scholar
  12. 12.
    Hintikka J.: Knowledge and Belief: An Introduction to the Logic of the Two Notions, Cornell University Press, Ithaca, NY (1962)Google Scholar
  13. 13.
    Holliday, W. H., and T. F. Icard, Moorean phenomena in epistemic logic, in L. Beklemishev, V. Goranko and V. Shehtman (eds.), Advances in Modal Logic, Volume 8, College Books, London, 2010, pp. 178–199.Google Scholar
  14. 14.
    Howe R.B.K.: The cognitive nature of desire, Southern Journal of Philosophy 32, 179–196 (1994)CrossRefGoogle Scholar
  15. 15.
    Humberstone L.: Wanting as believing, Canadian Journal of Philosophy 17, 49–62 (1987)Google Scholar
  16. 16.
    Humberstone L.: What Fa says about a, Dialectica 54, 1–28 (2000)Google Scholar
  17. 17.
    Humberstone L.: The modal logic of agreement and noncontingency, Notre Dame Journal of Formal Logic 43, 95–127 (2002)CrossRefGoogle Scholar
  18. 18.
    Humberstone, L., Modal formulas true at some point in every model, Australasian Journal of Logic 6:70–82, 2008. Scholar
  19. 19.
    Humberstone L.: Collapsing modalities, Notre Dame Journal of Formal Logic 50, 119–132 (2009)CrossRefGoogle Scholar
  20. 20.
    Humberstone L.: The Connectives, MIT Press, Cambridge, Massachusetts (2011)Google Scholar
  21. 21.
    Humberstone, L., Replacement in logic, Journal of Philosophical Logic (in press).Google Scholar
  22. 22.
    Humberstone L., Williamson T.: Inverses for normal modal operators, Studia Logica 59, 33–64 (1997)CrossRefGoogle Scholar
  23. 23.
    Kracht M.: The Mathematics of Language, Mouton de Gruyter, Berlin (2003)CrossRefGoogle Scholar
  24. 24.
    von Kutschera F.: Global supervenience and belief, Journal of Philosophical Logic 23, 103–110 (1994)CrossRefGoogle Scholar
  25. 25.
    Lemmon, E. J., and D. S. Scott, in K. Segerberg (ed.), An Introduction to Modal Logic, American Philosophical Quarterly Monograph Series, Basil Blackwell, Oxford, 1977. Originally circulated 1966.Google Scholar
  26. 26.
    Linsky, B., Logical Types in Some Arguments About Knowability and Belief, pp.163–179 in Salerno [29].Google Scholar
  27. 27.
    Lucas J.R.: Mathematical tennis, Proceedings of the Aristotelian Society 85, 63–72 (1984)Google Scholar
  28. 28.
    Peacocke, C., Causal modalities and realism, in M. Platts (ed.), Reference, Truth and Reality, Routledge and Kegan Paul, London, 1980, pp. 41–68.Google Scholar
  29. 29.
    Salerno, J. (ed.), New Essays on the Knowability Paradox, Oxford University Press, Oxford (2009)Google Scholar
  30. 30.
    Salerno, J. Knowability Noir: 1945–1963, pp. 29–48 in [29].Google Scholar
  31. 31.
    Segerberg K.: Classical Propositional Operators, Oxford University Press, Oxford (1982)Google Scholar
  32. 32.
    Shvarts, G. F., Gentzen Style Theorems for K45 and K45D, in A. R. Maier and M. A. Taitslin (eds.), Logic at Botik ’89, LNCS #363, Springer-Verlag, Berlin, 1989, pp. 245–256.Google Scholar
  33. 33.
    Slaney, J., KD45 is Not a Doxastic Logic, Technical Report TR-SRS-3-96, Automated Reasoning Project, RSISE, Australian National University, Canberra, 1996.Google Scholar
  34. 34.
    Smiley T.J.: Relative necessity, Journal of Symbolic Logic 28, 113–134 (1963)CrossRefGoogle Scholar
  35. 35.
    Smoryński C.: Self-Reference and Modal Logic, Springer-Verlag, Berlin (1985)CrossRefGoogle Scholar
  36. 36.
    Sorensen R.: Blindspots, Clarendon Press, Oxford (1988)Google Scholar
  37. 37.
    Sorensen, R., Epistemic paradoxes, in E. N. Zalta (ed.), Stanford Encyclopedia of Philosophy (Spring 2012 edition). 〈〉.
  38. 38.
    Stalnaker, R. C., The problem of logical omniscience I, II, Chapters 13 and 14 of Stalnaker, Context and Content: Essays on Intentionality in Speech and Thought, Oxford University Press, Oxford, 1999.Google Scholar
  39. 39.
    Williamson T.: Continuum many maximal consistent normal bimodal logics with inverses, Notre Dame Journal of Formal Logic 39, 1128–1134 (1998)Google Scholar
  40. 40.
    Williamson T.: Two incomplete anti-realist modal epistemic logics, Journal of Symbolic Logic 55, 297–314 (1990)CrossRefGoogle Scholar
  41. 41.
    Williamson T.: Knowledge and Its Limits, Oxford University Press, Oxford (2000)Google Scholar
  42. 42.
    Wolter F.: A counterexample in tense logic, Notre Dame Journal of Formal Logic 37, 167–173 (1996)CrossRefGoogle Scholar
  43. 43.
    Zolin E. E., (2000) Embeddings of propositional monomodal logics. Logic Journal of the IGPL, 8:861–882Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Monash UniversityMelbourneAustralia

Personalised recommendations