Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

BookReview

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Beziau, J.-Y., La logique paraconsitante C1 de Newton C.A. da Costa, Master Thesis, Department of Mathematics, University Denis Diderot, Paris, 1990.

  2. 2.

    Beziau J.-Y.: Théorie législative de la négation pure. Logique et Analyse 147-148, 209–225 (1994)

  3. 3.

    Beziau J.-Y.: Logic may be simple. Logic and Logical Philosophy 5, 129–147 (1997)

  4. 4.

    Beziau J.-Y.: S5 is a a paraconsistent logic and so is first-order logic. Logical Investigations 9, 301–309 (2002)

  5. 5.

    Beziau J.-Y.: Paraconsistent logic from a modal viewpoint. Journal of Applied Logic 3, 7–14 (2005)

  6. 6.

    Carnielli, W., and J. Marcos, A taxonomy of C-systems. In Paraconsistency: the Logical way to the inconsistent, Marcel Dekker, New York, 2002, pp. 1–94.

  7. 7.

    da Costa N.C.A., Beziau J.-Y.: Définitions, théories des objets et paraconsistance. Theoria 32, 367–379 (1998)

  8. 8.

    Marcos, J., Logics of Formal Inconsistency. PhD, Department of Philosophy, UNICAMP, Campinas and Department of Mathematics, IST, Lisbon, 2005.

  9. 9.

    Sylvan R., Urbas I.: Paraconsistent classical logic. Logique et Analyse 141-142, 3–24 (1993)

  10. 10.

    Urbas I.: Paraconsistency. Studies in Soviet Thought 39, 343–354 (1990)

  11. 11.

    Urbas I.: Paraconsistency and the C-Systems of da Costa. Notre Dame Journal of Formal Logic 37, 440–451 (1996)

Download references

Author information

Correspondence to Jean-Yves Beziau.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beziau, J. BookReview. Stud Logica 100, 653–657 (2012). https://doi.org/10.1007/s11225-012-9409-8

Download citation