Studia Logica

, Volume 101, Issue 5, pp 959–986 | Cite as

Socratic Trees

  • Dorota Leszczyńska-JasionEmail author
  • Mariusz Urbański
  • Andrzej Wiśniewski


The method of Socratic proofs (SP-method) simulates the solving of logical problem by pure questioning. An outcome of an application of the SP-method is a sequence of questions, called a Socratic transformation. Our aim is to give a method of translation of Socratic transformations into trees. We address this issue both conceptually and by providing certain algorithms. We show that the trees which correspond to successful Socratic transformations—that is, to Socratic proofs—may be regarded, after a slight modification, as Gentzen-style proofs. Thus proof-search for some Gentzen-style calculi can be performed by means of the SP-method. At the same time the method seems promising as a foundation for automated deduction.


Socratic transformations Socratic proofs Sequent calculi Proof search Automated deduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McAllester D., Givan R.: Taxonomic syntax for first order inferences. Journal of ACM 40(2), 246–283 (1993)CrossRefGoogle Scholar
  2. 2.
    Avron, A., The method of hypersequents in the proof theory of propositional non-classical logics, in W. Hodges et al. (eds.), Logic: Foundations to Applications, Oxford Science Publications, Clarendon Press, Oxford, 1996, pp. 1–32.Google Scholar
  3. 3.
    Buss, S.R. (ed.): Handbook of Proof Theory. Elsevier, Amsterdam (1998)Google Scholar
  4. 4.
    Heeffer A.: Automated Theorem Prover for CL and CLuN Based on the Method of Socratic Proofs. Ghent University, Centre for Logic and Philosophy of Science (2003)Google Scholar
  5. 5.
    Leszczyńska, D., Socratic proofs for some normal modal propositional logics, Logique et Analyse 185–188, 259–285, 2004.Google Scholar
  6. 6.
    Leszczyńska D.: The Method of Socratic Proofs for Normal Modal Propositional Logics. Adam Mickiewicz University Press, Poznań (2007)Google Scholar
  7. 7.
    Leszczyńska-Jasion D.: The method of socratic proofs for modal propositional logics: K5, S4.2, S4.3, S4M, S4F, S4R and G. Studia Logica 89(3), 371–405 (2008)Google Scholar
  8. 8.
    Leszczyńska-Jasion D.: A loop-free decision procedure for modal propositional logics K4, S4 and S5. Journal of Philosophical Logic 38(2), 151–177 (2009)CrossRefGoogle Scholar
  9. 9.
    Leszczyńska-Jasion, D., On Determining Modal Sequent Proofs by Socratic Proofs, Research Report, Adam Mickiewicz University, Institute of Psychology, Chair of Logic and Cognitive Science, 2010.Google Scholar
  10. 10.
    Negri S., von Plato J.: Structural Proof Theory. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  11. 11.
    Skura T.: Intuitionistic socratic procedures. Journal of Applied Non-Classical Logics 15(4), 453–464 (2005)CrossRefGoogle Scholar
  12. 12.
    Smullyan R.M.: First-Order Logic. Springer-Verlag, Berlin (1968)CrossRefGoogle Scholar
  13. 13.
    Troelstra A.S., Schwichtenberg H.: Basic Proof Theory (2nd ed.). Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  14. 14.
    Urbański, M., Socratic Proofs for Some Temporal Logics, Research Report, Adam Mickiewicz University, Institute of Psychology, Chair of Logic and Cognitive Science, 2005.Google Scholar
  15. 15.
    Wiśniewski A.: Erotetic implications. Journal of Philosophical Logic 23(2), 174–195 (1994)Google Scholar
  16. 16.
    Wiśniewski A.: The Posing of Questions: Logical Foundations of Erotetic Inferences. Kluwer Academic Publishers, Dordrecht/Boston/London (1995)Google Scholar
  17. 17.
    Wiśniewski A.: The logic of questions as a theory of erotetic arguments. Synthese 109(2), 1–25 (1996)CrossRefGoogle Scholar
  18. 18.
    Wiśniewski A.: Questions and inferences. Logique et Analyse 173–175, 5–43 (2001)Google Scholar
  19. 19.
    Wiśniewski A.: Socratic proofs. Journal of Philosophical Logic 33(3), 299–326 (2004)CrossRefGoogle Scholar
  20. 20.
    Wiśniewski A., Vanackere G., Leszczyńska D.: Socratic proofs and paraconsistency: a case study. Studia Logica 80(2–3), 433–468 (2005)Google Scholar
  21. 21.
    Wiśniewski A., Shangin V.: Socratic proofs for quantifiers. Journal of Philosophical Logic 35(2), 147–178 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Dorota Leszczyńska-Jasion
    • 1
    Email author
  • Mariusz Urbański
    • 1
  • Andrzej Wiśniewski
    • 1
  1. 1.Chair of Logic and Cognitive ScienceAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations