Studia Logica

, Volume 101, Issue 3, pp 583–599 | Cite as

Some Normal Extensions of K4.3



This paper proves the finite model property and the finite axiomatizability of a class of normal modal logics extending K4.3. The frames for these logics are those for K4.3, in each of which every point has a bounded number of irreflexive successors if it is after an infinite ascending chain of (not necessarily distinct) points.


Modal logic Normal extensions of K4.3 Finite model property Finite axiomatizability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blackburn, P., M. de Rijke, and Y. Venema, Modal Logic, vol. 53 of Cambridge Tracts in Theoretical Computer Science, Cambridge Univerity Press, Cambridge, 2001.Google Scholar
  2. 2.
    Bull R.A.: That all normal extensions of S4.3 have the finite model property. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 12, 341–344 (1966)CrossRefGoogle Scholar
  3. 3.
    Bull, R. A., and K. Segerberg, Basic modal logic, in D. Gabbay, and F. Guenthner (eds.), Handbook of Philosophical Logic, vol. 2, D. Reidel Publishing Company, Dordrecht, 1984, pp. 1–88.Google Scholar
  4. 4.
    Chagrov, A., and M. Zakharyaschev, Modal Logic, vol. 35 of Oxford Logic Guides, Oxford University Press, Oxford, 1997.Google Scholar
  5. 5.
    Fine K.: The logics containing S4.3. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 17, 371–376 (1971)CrossRefGoogle Scholar
  6. 6.
    Fine K.: Logics containing K4, Part I. The Journal of Symbolic Logic 39, 31–42 (1974)CrossRefGoogle Scholar
  7. 7.
    Goldblatt, R., Logics of Time and Computation, vol. 7 of CSLI Lecture Notes, Center for the Study of Language and Information, Stanford University, 1987.Google Scholar
  8. 8.
    Kracht, M., Tools and techniques in modal logic, vol. 142 of Studies in Logic and the Foundations of Mathematics, Elsevier Science B. V., Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore and Tokyo, 1999.Google Scholar
  9. 9.
    Li, K., Normal extensions of K4.3Z, Manuscript, August 2011, Department of Philosophy, Wuhan University 2011.Google Scholar
  10. 10.
    Scroggs S.J.: Extensions of the Lewis system S5. The Journal of Symbolic Logic 16, 112–120 (1951)CrossRefGoogle Scholar
  11. 11.
    Segerberg, K., An essay in classical modal logic, Philosophical Studies published by the Philosophical Society and the Department of Philosophy, University of Uppsala, Uppsala, 1971.Google Scholar
  12. 12.
    Xu M.: Normal extensions of G.3. Theoria 68(2), 170–176 (2002)CrossRefGoogle Scholar
  13. 13.
    Xu, M., A note on the finite axiomatizability of transitive logics of finite depth and finite width, (2011). Manuscript, May 2011, Department of Philosophy, Wuhan University.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of PhilosophyWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations