Studia Logica

, Volume 101, Issue 1, pp 11–29 | Cite as

The Variety Generated by all the Ordinal Sums of Perfect MV-Chains

  • Matteo Bianchi


We present the logic BLChang, an axiomatic extension of BL (see [23]) whose corresponding algebras form the smallest variety containing all the ordinal sums of perfect MV-chains. We will analyze this logic and the corresponding algebraic semantics in the propositional and in the first-order case. As we will see, moreover, the variety of BLChang-algebras will be strictly connected to the one generated by Chang’s MV-algebra (that is, the variety generated by all the perfect MV-algebras): we will also give some new results concerning these last structures and their logic.


Many-valued logics BL-algebras Perfect MV-algebras Łukasiewicz logic Basic Logic Wajsberg hoops 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aglianò P., Ferreirim I. M. A.: Montagna F Basic Hoops: an Algebraic Study of Continuous t-norms. Studia Logica 87(1), 73–98 (2007). doi: 10.1007/s11225-007-9078-1.CrossRefGoogle Scholar
  2. 2.
    Aglianò P., Montagna F.: Varieties of BL-algebras I: general properties. Journal of Pure and Applied Algebra 181(2–3), 105–129 (2003). doi: 10.1016/S0022-4049(02)00329-8.CrossRefGoogle Scholar
  3. 3.
    Aguzzoli, S., S. Bova, and V. Marra, Applications of Finite Duality to Locally Finite Varieties of BL-Algebras, in S. Artemov and A. Nerode (eds.), Logical Foundations of Computer Science - International Symposium, LFCS 2009, Deerfield Beach, FL, USA, January 3–6, 2009. Proceedings, vol. 5407 of Lecture Notes in Computer Science, Springer, Berlin/Heidelberg, 2009, pp. 1–15. doi: 10.1007/978-3-540-92687-0_1.
  4. 4.
    Belluce L. P., Di Nola A., Gerla B: Perfect MV-algebras and their logic. Applied Categorical Structure 15(1–2), 135–151 (2007). doi: 10.1007/s10485-007-9069-4.CrossRefGoogle Scholar
  5. 5.
    Belluce, L. P., A. Di Nola, and B. Gerla, The logic of perfect MV-algebras, in M. Stepnicka, V. Novák, and U. Bodenhofer (eds.), New Dimensions in Fuzzy Logic and Related Technologies. Proceedings of the 5th EUSFLAT Conference, Ostrava, Czech Republic, September 11–14, 2007, vol. 2: Regular Sessions, Universitas Ostraviensis, 2007, pp. 195–199. Available on
  6. 6.
    Belluce L. P., Di Nola A., Lettieri A.: Local MV-algebras. Rendiconti del circolo matematico di Palermo 42(3), 347–361 (1993). doi: 10.1007/BF02844626.CrossRefGoogle Scholar
  7. 7.
    Bianchi M., Montagna F.: Supersound many-valued logics and Dedekind-MacNeille completions. Archive for Mathematical Logic 48(8), 719–736 (2009). doi: 10.1007/s00153-009-0145-3.CrossRefGoogle Scholar
  8. 8.
    Blok W. J., Ferreirim I. M. A.: On the structure of hoops. Algebra Universalis 43(2–3), 233–257 (2000). doi: 10.1007/s000120050156.CrossRefGoogle Scholar
  9. 9.
    Burris, S., and H. P. Sankappanavar, A Course in Universal Algebra, vol. 78 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1981. An updated and revised electronic edition is available on
  10. 10.
    Busaniche M.: Decomposition of BL-chains. Algebra Universalis 52(4), 519–525 (2004). doi: 10.1007/s00012-004-1899-4.CrossRefGoogle Scholar
  11. 12.
    Chang, C. C., Algebraic analysis of many-valued logics, Transactions of American Mathematical Society88(2):467–490, 1958.
  12. 13.
    Cignoli R., The Algebras of Łukasiewicz Many-Valued Logic: A Historical Overview, in S. Aguzzoli, A. Ciabattoni, B. Gerla, C. Manara, and V. Marra (eds.), Algebraic and Proof-theoretic Aspects of Non-classical Logics—Papers in Honor of Daniele Mundici on the Occasion of His 60th birthday, vol. 4460/2007 of Lecture Notes in Computer Science, Springer, Berlin/Heidelberg, 2007, pp. 69–83. doi: 10.1007/978-3-540-75939-3_5.
  13. 14.
    Cignoli, R., I. D’Ottaviano, and D. Mundici, Algebraic Foundations of Many-Valued Reasoning, vol. 7 of Trends in Logic, Kluwer Academic Publishers, Dordrecht, 1999. ISBN:9780792360094.Google Scholar
  14. 15.
    Cignoli R., Torrens P.: Free algebras in varieties of Glivenko MTL-algebras Satisfying the Equation 2(x 2) = (2x)2. Studia Logica 83(1–3), 157–181 (2006). doi: 10.1007/s11225-006-8302-8.CrossRefGoogle Scholar
  15. 16.
    Cintula P., Esteva F., Gispert J., Godo L., Montagna F., Noguera C.: Distinguished algebraic semantics for t-norm based fuzzy logics: methods and algebraic equivalencies. The Annals of Pure and Applied Logic 160(1), 53–81 (2009). doi: 10.1016/j.apal.2009.01.012.CrossRefGoogle Scholar
  16. 17.
    Cintula P., Hájek P.: On theories and models in fuzzy predicate logics. The Journal of Symbolic Logic 71(3), 863–880 (2006). doi: 10.2178/jsl/1154698581.CrossRefGoogle Scholar
  17. 18.
    Cintula P., Hájek P.: Triangular norm predicate fuzzy logics. Fuzzy Sets Systems 161(3), 311–346 (2010). doi: 10.1016/j.fss.2009.09.006.CrossRefGoogle Scholar
  18. 19.
    Di Nola, A., and A. Lettieri, Perfect MV-Algebras are categorically equivalent to Abelian l-groups, Studia Logica 53(3):417–432, 1994. Available on
  19. 20.
    Di Nola A., Sessa S., Esteva F., Godo L., Garcia P.: The variety generated by perfect BL-Algebras: an algebraic approach in a fuzzy logic setting. Annals of Mathematics and Artificial Intelligence 35(1–4), 197–214 (2002). doi: 10.1023/A:1014539401842.CrossRefGoogle Scholar
  20. 21.
    Esteva F., Godo L., Hájek P., Montagna F.: Hoops and Fuzzy Logic. Journal of Logic and Computation 13(4), 532–555 (2003). doi: 10.1093/logcom/13.4.532.CrossRefGoogle Scholar
  21. 22.
    Ferreirim, I., On varieties and quasivarieties of hoops and their reducts, Ph.D. thesis, University of Illinois at Chicago, Chicago, IL, 1992.Google Scholar
  22. 23.
    Grätzer, G., Universal Algebra, reprint of 1979 second edn., Springer, 2008. ISBN: 978-0-387-77486-2. Online edition:
  23. 24.
    Hájek, P., Metamathematics of Fuzzy Logic, vol. 4 of Trends in Logic, paperback edn., Kluwer Academic Publishers, Dordrecht, 1998. ISBN:9781402003707.Google Scholar
  24. 25.
    Hájek P.: On witnessed models in fuzzy logic. Mathematical Logic Quarterly 53(1), 66–77 (2007). doi: 10.1002/malq.200610027.CrossRefGoogle Scholar
  25. 26.
    Jenei S.: On the structure of rotation-invariant semigroups’. Archive for Mathematical Logic 42(5), 489–514 (2003). doi: 10.1007/s00153-002-0165-8.CrossRefGoogle Scholar
  26. 27.
    Montagna F.: Completeness with respect to a chain and universal models in fuzzy logic. Archive for Mathematical Logic 50(1–2), 161–183 (2011). doi: 10.1007/s00153-010-0207-6.CrossRefGoogle Scholar
  27. 28.
    Noguera C., Esteva F., Gispert J.: Perfect and bipartite IMTL-algebras and disconnected rotations of prelinear semihoops. Archive for athematical Logic 44(7), 869–886 (2005). doi: 10.1007/s00153-005-0276-0.CrossRefGoogle Scholar
  28. 29.
    Turunen, E., BL-algebras of Basic Fuzzy Logic, Mathware & Soft Computing 6(1):49–61, 1999. Available on

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Dipartimento di Informatica e ComunicazioneUniversità degli Studi di MilanoMilanItaly

Personalised recommendations