Studia Logica

, Volume 101, Issue 1, pp 45–63

Negative Translations Not Intuitionistically Equivalent to the Usual Ones



We refute the conjecture that all negative translations are intuitionistically equivalent by giving two counterexamples. Then we characterise the negative translations intuitionistically equivalent to the usual ones.


Negative translation Classical logic Intuitionistic logic Minimal logic Negative fragment 

Mathematics Subject Classification (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avigad, J., A variant of the Double-Negation Translation, Carnegie Mellon University Research Showcase, number CMU-PHIL-179, 2006.Google Scholar
  2. 2.
    Berger U., Buchholz W., Schwichtenberg H.: Refined program extraction from classical proofs. Annals of Pure and Applied Logic 114(1–3), 3–25 (2002)CrossRefGoogle Scholar
  3. 3.
    Coquand, T., Computational content of classical logic, in A. M. Pitts and P. Dybjer (eds.), Semantics and Logics of Computation, Cambridge University Press, Cambridge, United Kingdom, 1997, pp. 33–78.Google Scholar
  4. 4.
    Dragalin A.G.: New forms of realizability and Markov’s rule. Soviet Mathematics Doklady 21(2), 461–464 (1980)Google Scholar
  5. 5.
    Dragalin, A. G., New forms of realizability and Markov’s rule (Russian), Doklady Akademii Nauk SSSR 251:534–537, 1980. English translation: New forms of realizability and Markov’s rule [4].Google Scholar
  6. 6.
    Ferreira, G., and P. Oliva, On various negative translations, in S. van Bakel, S. Berardi and U. Berger (eds.), Electronic Proceedings in Theoretical Computer Science, number 47, 2001, pp. 21–33. Proceedings of the Third International Workshop on Classical Logic and Computation, Brno, Czech Republic, 21–22 August 2010.Google Scholar
  7. 7.
    Flagg R.C., Friedman H.: Epistemic and intuitionistic formal systems. Annals of Pure and Applied Logic 32, 53–60 (1986)CrossRefGoogle Scholar
  8. 8.
    Friedman, H., Classically and intuitionistically provably recursive functions, in G. H. Müller and D. S. Scott (eds.), Higher Set Theory, Lecture Notes in Mathematics, number 669, Springer-Verlag, Berlin, Germany, and Heidelberg, Germany, 1978, pp. 21–27. Proceedings of Higher Set Theory, Oberwolfach, Germany, 13–23 April 1977.Google Scholar
  9. 9.
    Gentzen, G., Über das Verhältnis zwischen intuitionistischer und klassischer Arithmetik, 1933. Galley proof from Mathematische Annalen. Appeared in Archiv für mathematische Logik und Grundlagenforschung [11]. English translation: On the relation between intuitionistic and classical arithmetic [10, pp. 53–67].Google Scholar
  10. 10.
    Gentzen, G., The Collected Papers of Gerhard Gentzen, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Company, Amsterdam, Netherlands, and London, United Kingdom, 1969.Google Scholar
  11. 11.
    Gentzen G.: Über das Verhältnis zwischen intuitionistischer und klassischer Arithmetik. Archiv für mathematische Logik und Grundlagenforschung 16, 119–132 (1974)CrossRefGoogle Scholar
  12. 12.
    Gödel, K., Zur intuitionistischen Arithmetik und Zahlentheorie, Ergebnisse eines mathematischen Kolloquiums 4:34–38, 1933. English translation: On intuitionistic arithmetic and number theory [13, pp. 286–295].Google Scholar
  13. 13.
    Gödel, K., Collected Works, volume 1, Oxford University Press, New York, United States of America, 1986.Google Scholar
  14. 14.
    Ishihara H.: A note on the Gödel-Gentzen translation. Mathematical Logic Quarterly 46(1), 135–137 (2000)CrossRefGoogle Scholar
  15. 15.
    Kolmogorov, A. N., On the principle of tertium non datur (Russian), Matematicheskii Sbornik 32(4):646–667, 1925. English translation: On the principle of excluded middle [22, pp. 414–437].Google Scholar
  16. 16.
    Krivine J.-L.: Opérateurs de mise en mémoire et traduction de Gödel. Archive for Mathematical Logic 30(4), 241–267 (1990)CrossRefGoogle Scholar
  17. 17.
    Kuroda S.: Intuitionistische Untersuchungen der formalistischen Logik. Nagoya Mathematical Journal 2, 35–47 (1951)Google Scholar
  18. 18.
    Streicher T., Kohlenbach U.: Shoenfield is Gödel after Krivine. Mathematical Logic Quarterly 53(2), 176–179 (2007)CrossRefGoogle Scholar
  19. 19.
    Streicher T., Reus B.: Classical logic, continuation semantics and abstract machines. Journal of Functional Programming 8(6), 543–572 (1998)CrossRefGoogle Scholar
  20. 20.
    Troelstra, A. S., Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Lecture Notes in Mathematics, number 344, Springer-Verlag, Berlin, Germany, and Heidelberg, Germany, 1973.Google Scholar
  21. 21.
    van Dalen, D., Logic and Structure, Springer-Verlag, 1980. Fourth edition, 2004.Google Scholar
  22. 22.
    van Heijenoort, J., (ed.), From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge, Massachusetts, United States of America, 1967.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Arbeitsgruppe Logik, Fachbereich MathematikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations