Studia Logica

, 99:279

Contextual Deduction Theorems

Article

Abstract

Logics that do not have a deduction-detachment theorem (briefly, a DDT) may still possess a contextual DDT—a syntactic notion introduced here for arbitrary deductive systems, along with a local variant. Substructural logics without sentential constants are natural witnesses to these phenomena. In the presence of a contextual DDT, we can still upgrade many weak completeness results to strong ones, e.g., the finite model property implies the strong finite model property. It turns out that a finitary system has a contextual DDT iff it is protoalgebraic and gives rise to a dually Brouwerian semilattice of compact deductive filters in every finitely generated algebra of the corresponding type. Any such system is filter distributive, although it may lack the filter extension property. More generally, filter distributivity and modularity are characterized for all finitary systems with a local contextual DDT, and several examples are discussed. For algebraizable logics, the well-known correspondence between the DDT and the equational definability of principal congruences is adapted to the contextual case.

Keywords

Deductive system deduction-detachment theorem protoalgebraic algebraizable quasivariety EDPC distributive modular substructural logics 

References

  1. 1.
    Anderson A.R., Belnap Jnr N.D.: ‘Modalities in Ackermann’s “rigorous implication”’. J. Symbolic Logic 24, 107–111 (1959)CrossRefGoogle Scholar
  2. 2.
    Anderson, A. R., and N. D. Belnap, Jnr., Entailment: The Logic of Relevance and Necessity, Vol. 1, Princeton University Press, 1975.Google Scholar
  3. 3.
    Avron A.: ‘The semantics and proof theory of linear logic’. Theoretical Computer Science 57, 161–184 (1988)CrossRefGoogle Scholar
  4. 4.
    Blok W.J., Jónsson B.: ‘Equivalence of consequence operations’. Studia Logica 83, 91–110 (2006)CrossRefGoogle Scholar
  5. 5.
    Blok, W. J., P. Köhler, and D. Pigozzi, ‘The algebraization of logic’, manuscript, 1983.Google Scholar
  6. 6.
    Blok W.J., Pigozzi D.: ‘Protoalgebraic logics’. Studia Logica 45, 337–369 (1986)CrossRefGoogle Scholar
  7. 7.
    Blok, W. J., and D. Pigozzi, ‘Local deduction theorems in algebraic logic’, in H. Andréka, J.D. Monk, and I. Nemeti (eds.), Algebraic Logic, Colloquia Mathematica Societatis János Bolyai 54, Budapest (Hungary), 1988, pp. 75–109.Google Scholar
  8. 8.
    Blok, W. J., and D. Pigozzi, ‘Algebraizable Logics’, Memoirs of the American Mathematical Society, Number 396, Amer. Math. Soc., Providence, 1989.Google Scholar
  9. 9.
    Blok, W. J., and D. Pigozzi, ‘Algebraic semantics for universal Horn logic without equality’, in A. Romanowska, and J. D. H. Smith (eds.), Universal Algebra and Quasigroup Theory, Heldermann Verlag, Berlin, 1992, pp. 1–56.Google Scholar
  10. 10.
    Blok, W. J., and D. Pigozzi, ‘Abstract algebraic logic and the deduction theorem’, manuscript, 1997. [See http://orion.math.iastate.edu/dpigozzi/ for updated version, 2001.]
  11. 11.
    Blok,W. J., and J. G. Raftery, ‘Ideals in quasivarieties of algebras’, in X. Caicedo, and C. H. Montenegro (eds.), Models, Algebras and Proofs, Lecture Notes in Pure and Applied Mathematics, Vol. 203, Marcel Dekker, New York, 1999, pp. 167–186.Google Scholar
  12. 12.
    Blok W.J., Raftery J.G.: ‘Fragments of R–mingle’. Studia Logica 78, 59–106 (2004)CrossRefGoogle Scholar
  13. 13.
    Blok W.J., Raftery J.G.: ‘Assertionally equivalent quasivarieties’. Internat. J.Algebra Comput 18, 589–681 (2008)CrossRefGoogle Scholar
  14. 14.
    Buszkowski W.: ‘The finite model property for BCI and related systems’. Studia Logica 57, 303–323 (1996)CrossRefGoogle Scholar
  15. 15.
    Church, A., ‘The weak theory of implication’, in A. Menne, A. Wilhelmy, and H. Angsil (eds.), Kontrolliertes Denken, Untersuchungen zum Logikkalkül und zur Logik der Einzelwissenschaften, Kommissions-Verlag Karl Alber, 1951, pp. 22–37.Google Scholar
  16. 16.
    Church A.: ‘The weak positive implicational propositional calculus’ (abstract). J. Symbolic Logic 16, 238 (1951)Google Scholar
  17. 17.
    Czelakowski J.: ‘Algebraic aspects of deduction theorems’. Studia Logica 44, 369–387 (1985)CrossRefGoogle Scholar
  18. 18.
    Czelakowski J.: ‘Local deduction theorems’. Studia Logica 45, 377–391 (1986)CrossRefGoogle Scholar
  19. 19.
    Czelakowski J.: Protoalgebraic Logics. Kluwer, Dordrecht (2001)Google Scholar
  20. 20.
    Czelakowski J., Dziobiak W.: ‘A deduction theorem schema for deductive systems of propositional logics’. Studia Logica 50, 385–390 (1991)CrossRefGoogle Scholar
  21. 21.
    Czelakowski J., Dziobiak W.: ‘The parameterized local deduction theorem for quasivarieties of algebras and its application’. Algebra Universalis 35, 377–419 (1996)CrossRefGoogle Scholar
  22. 22.
    Czelakowski J., Dziobiak W.: ‘Deduction theorems within RM and its extensions’. J. Symbolic Logic 64, 279–290 (1999)CrossRefGoogle Scholar
  23. 23.
    Font, J. M., R. Jansana, and D. Pigozzi, ‘A survey of abstract algebraic logic’, and ‘Update’, Studia Logica74:13–97, 2003, and 91:125–130, 2009.Google Scholar
  24. 24.
    Font J.M., Rodríguez G.: ‘Note on algebraic models for relevance logic’. Zeitschr. f. math. Logik Grundlagen d. Math 36, 535–540 (1990)CrossRefGoogle Scholar
  25. 25.
    Fried E., Grätzer G., Quackenbush R.: ‘Uniform congruence schemes’. Algebra Universalis 10, 176–189 (1980)CrossRefGoogle Scholar
  26. 26.
    Galatos N., Ono H.: ‘Algebraization, parametrized local deduction theorem and interpolation for substructural logics over FL’. Studia Logica 83, 279–308 (2006)CrossRefGoogle Scholar
  27. 27.
    Girard J.-Y.: ‘Linear logic’. Theoretical Computer Science 50, 1–102 (1987)CrossRefGoogle Scholar
  28. 28.
    Grätzer G.: General Lattice Theory. Birkhäuser Verlag, Basel (1978)Google Scholar
  29. 29.
    Herrmann B.: ‘Equivalential and algebraizable logics’. Studia Logica 57, 419–436 (1996)CrossRefGoogle Scholar
  30. 30.
    Herrmann B.: ‘Characterizing equivalential and algebraizable logics by the Leibniz operator’. Studia Logica 58, 305–323 (1997)CrossRefGoogle Scholar
  31. 31.
    Hsieh A., Raftery J.G.: ‘Conserving involution in residuated structures’. Math. Logic Quarterly 53, 583–609 (2007)CrossRefGoogle Scholar
  32. 32.
    Idziak P.M., Słomczyńska K., Wroński A.: ‘Fregean varieties’. Internat. J.Algebra Comput 19, 595–645 (2009)CrossRefGoogle Scholar
  33. 33.
    Idziak P.M., Wroński A.: ‘Definability of principal congruences in equivalential algebras’. Colloq. Math 74, 225–238 (1997)Google Scholar
  34. 34.
    Kabziński J. K.: ‘BCI–algebras from the point of view of logic’. Bull. Sect. Logic 12, 126–129 (1983)Google Scholar
  35. 35.
    Köhler P., Pigozzi D.: ‘Varieties with equationally definable principal congruences’. Algebra Universalis 11, 213–219 (1980)CrossRefGoogle Scholar
  36. 36.
    Kripke S.: ‘The problem of entailment’ (abstract). J. Symbolic Logic 24, 324 (1959)Google Scholar
  37. 37.
    Lafont Y.: ‘The finite model property for various fragments of linear logic’. J. Symbolic Logic 62, 1202–1208 (1997)CrossRefGoogle Scholar
  38. 38.
    Łoś J., Suszko R.: ‘Remarks on sentential logics’. Proc. Kon. Nederl.Akad. van Wetenschappen, Series A 61, 177–183 (1958)Google Scholar
  39. 39.
    Meyer R.K.: ‘Conservative extension in relevant implication’. Studia Logica 31, 39–46 (1972)CrossRefGoogle Scholar
  40. 40.
    Meyer R.K.: ‘On conserving positive logics’. Notre Dame J. Formal Logic 14, 224–236 (1973)CrossRefGoogle Scholar
  41. 41.
    Meyer R. K.: ‘Intuitionism, entailment, negation’. In: Leblanc, H. (eds) Truth, Syntax and Modality, pp. 168–198. North Holland, Amsterdam (1973)CrossRefGoogle Scholar
  42. 42.
    Meyer R. K.: ‘Improved decision procedures for pure relevant logic’. In: Anderson, C. A., Zeleny, M. (eds) Logic, Meaning and Computation., pp. 191–217. Kluwer, Dordrecht (2001)CrossRefGoogle Scholar
  43. 43.
    Meyer R.K., Routley R.: ‘E is a conservative extension of EĪ’. Philosophia 4, 223–249 (1974)CrossRefGoogle Scholar
  44. 44.
    Olson J. S., Raftery J. G., van Alten C. J.: ‘Structural completeness in substructural logics’. Logic J. of the IGPL 16, 453–495 (2008)CrossRefGoogle Scholar
  45. 45.
    Pałasińska K.: ‘Finite basis theorem for filter-distributive protoalgebraic deductive systems and strict universal Horn classes’. Studia Logica 74, 233–273 (2003)CrossRefGoogle Scholar
  46. 46.
    Raftery, J. G., and C. J. van Alten, ‘Residuation in commutative ordered monoids with minimal zero’, and ‘Corrigendum’, Rep. Math. Logic 34:23–57, 2000, and 39:133–135, 2005.Google Scholar
  47. 47.
    Slaney J.K., Meyer R.K.: ‘A structurally complete fragment of relevant logic’. Notre Dame J. Formal Logic 33, 561–566 (1992)CrossRefGoogle Scholar
  48. 48.
    Troelstra, A. S., Lectures on Linear Logic, CSLI Lecture Notes No. 29, 1992.Google Scholar
  49. 49.
    van Alten C. J.: ‘The finite model property for knotted extensions of propositional linear logic’. J. Symbolic Logic 70, 84–98 (2005)CrossRefGoogle Scholar
  50. 50.
    van Alten C. J., Raftery J. G.: ‘Rule separation and embedding theorems for logics without weakening’. Studia Logica 76, 241–274 (2004)CrossRefGoogle Scholar
  51. 51.
    Wei S. M., Jun Y.B.: ‘Ideal lattices of BCI-algebras’. Math. Japonica 44, 303–305 (1996)Google Scholar
  52. 52.
    Wójcicki R.: ‘Matrix approach in methodology of sentential calculi’. Studia Logica 32, 7–37 (1973)CrossRefGoogle Scholar
  53. 53.
    Wójcicki R.: Theory of Logical Calculi. Kluwer, Dordrecht (1988)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of KwaZulu-Natal (Westville Campus)DurbanSouth Africa

Personalised recommendations