Studia Logica

, Volume 98, Issue 1–2, pp 237–250 | Cite as

On Endomorphisms of Ockham Algebras with Pseudocomplementation



A pO-algebra \({(L; f, \, ^{\star})}\) is an algebra in which (L; f) is an Ockham algebra, \({(L; \, ^{\star})}\) is a p-algebra, and the unary operations f and \({^{\star}}\) commute. Here we consider the endomorphism monoid of such an algebra. If \({(L; f, \, ^{\star})}\) is a subdirectly irreducible pK 1,1- algebra then every endomorphism \({\vartheta}\) is a monomorphism or \({\vartheta^3 = \vartheta}\) . When L is finite the endomorphism monoid of L is regular, and we determine precisely when it is a Clifford monoid.


Ockham algebra pseudocomplementation endomorphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blyth T.S., Varlet J.C.: Ockham algebras. Oxford University Press, Oxford (1994)Google Scholar
  2. 2.
    Blyth T.S., Silva H.J.: ‘On Ockham algebras whose endomorphism semigroups are regular’. Communications in Algebra 24, 919–928 (1996)CrossRefGoogle Scholar
  3. 3.
    Blyth T.S., Silva H.J.: ‘Endomorphism regular Ockham algebras of finite boolean type’. Glasgow Math. J. 39, 99–110 (1997)CrossRefGoogle Scholar
  4. 4.
    Blyth, T. S., H. J. Silva, and J. C. Varlet, ‘On the endomorphism monoid of a finite subdirectly irreducible Ockham algebra’, Unsolved problems in mathematics for the 21st century, IOS, Amsterdam, 149–157, 2001.Google Scholar
  5. 5.
    Blyth T.S., Jie Fang, Varlet J.C.: ‘Ockham algebras with pseudocomplementation’. Communications in Algebra 25, 3605–3615 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of St AndrewsSt AndrewsScotland
  2. 2.School of Computer ScienceGuangdong Polytechnic Normal UniversityGuangdongP.R. China

Personalised recommendations