Studia Logica

, Volume 98, Issue 1–2, pp 141–147 | Cite as

Boolean Skeletons of MV-algebras and -groups

Article
  • 77 Downloads

Abstract

Let Γ be Mundici’s functor from the category \({\mathcal{LG}}\) whose objects are the lattice-ordered abelian groups (-groups for short) with a distinguished strong order unit and the morphisms are the unital homomorphisms, onto the category \({\mathcal{MV}}\) of MV-algebras and homomorphisms. It is shown that for each strong order unit u of an -group G, the Boolean skeleton of the MV-algebra Γ(G, u) is isomorphic to the Boolean algebra of factor congruences of G.

Keywords

MV-algebras lattice-ordered abelian groups -ideals direct decompositions Boolean products 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bigard, A., K. Keimel, and S. Wolfenstein, Groupes et anneaux rèticulès, Lectures Notes in Mathematics, v. 108, Springer-Verlag, New York - Heildelberg - Berlin, 1977.Google Scholar
  2. 2.
    Borkowski, L. (eds): Selected Works of J. Łukasiewicz. North-Holland, Amsterdam (1970)Google Scholar
  3. 3.
    Chang C.C.: ‘Algebraic analysis of many-valued logics’. Trans. Amer. Math. Soc 88, 467–490 (1958)CrossRefGoogle Scholar
  4. 4.
    Chang C.C.: ‘A new proof of the completeness of the Łukasiewicz axioms’. Trans. Amer. Math. Soc 93, 74–90 (1959)Google Scholar
  5. 5.
    Cignoli R., Mundici D.: ‘An elementary proof of Chang’s completeness theorem for the infinite-valued calculus of Łukasiewicz’. Studia Logica 58, 79–97 (1997)CrossRefGoogle Scholar
  6. 6.
    Cignoli, R., and D. Mundici, ‘An invitation to Chang’s MV-algebras’. In M. Droste and R. Göbel (eds.), Conference on Algebra and Model Theory, Dresden 1995, Gordon and Breach, Amsterdam, 1997, pp. 171–197.Google Scholar
  7. 7.
    Cignoli R., Mundici D.: ‘An elementary presentation of the equivalence between MV-algebras and -groups’. Studia Logica, 61, 49–64 (1998)CrossRefGoogle Scholar
  8. 8.
    Cignoli R., D’Ottaviano I.M.L., Mundici D.: Algebraic foundations of manyvalued reasoning. Kluwer Academic Pub, Dordrecht (2000)Google Scholar
  9. 9.
    Łukasiewicz, J., and A. Tarski, ‘Untersuchungen über den Aussagenkalkül’, Comptes rendus de la Société des Sciences et des Lettres de Varsovie, (English translation in [2] and [11]), 23:30–50, 1930.Google Scholar
  10. 10.
    Mundici D.: ‘Interpretation of AF C*-algebras in Łukasiewicz sentential calculus’. J. Funct. Anal 65, 15–63 (1986)CrossRefGoogle Scholar
  11. 11.
    Tarski, A., Logic, Semantics, Metamathematics, Clarendon Press, Oxford, 1956. Reprinted Hackett, Indianapolis, 1983.Google Scholar
  12. 12.
    Torrens A.: ‘W-algebras which are Boolean products of members of SR[1] and CW-algebras’. Studia Logica 46, 263–272 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Departamento de Matemtica, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations