Studia Logica

, Volume 95, Issue 1–2, pp 139–159 | Cite as

A Completeness Proof of Kiczuk’s Logic of Physical Change

  • Robert Trypuz


In this paper the class of minimal models C ZI for Kiczuk’s system of physical change ZI is provided and soundness and completeness proofs of ZI with respect to these models are given. ZI logic consists of propositional logic von Wright’s And Then and six specific axioms characterizing the meaning of unary propositional operator “Zm”, read “there is a change in the fact that”. ZI is intended to be a logic which provides a formal account for describing two kinds of process change: the change from one state of the process to its other state (e.g., transmitting or absorbing energy with greater or less than the usual intensity) and the perishing of the process (e.g., cessation of the energetic activity of the sun).


logic of change completeness modal logic event process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chellas, B. F., Modal Logic: an introduction, Cambridge University Press, 1993.Google Scholar
  2. 2.
    Clifford, J. E., ‘Tense logic and the logic of change’, Logique et Analyse, 9, 1966.Google Scholar
  3. 3.
    Kiczuk, S., Problematyka wartości poznawczej systemów logiki zmiany, Redakcja Wydawnictw KUL, 1984.Google Scholar
  4. 4.
    Kiczuk, S., ‘System logiki zmiany’, Roczniki Filozoficzne, 33(1), 1991.Google Scholar
  5. 5.
    Kiczuk, S., ‘The System of the Logic of Change’, Studies in Logic and Thory of Knowledge, 2, 51–86, Lublin 1991.Google Scholar
  6. 6.
    Prior A.N.: Past, Present and Future. Clarendon Press, Oxford (1967)Google Scholar
  7. 7.
    Scott, D., The logic of tenses, Stanford University, 1965.Google Scholar
  8. 8.
    Świȩtorzecka, K., Classical Conceptions of the Changeability of Situations and Things Represented in Formalized Languages, Wydawnictwo Uniwersytetu Kardynała Stefana Wyszyńskiego, 2008.Google Scholar
  9. 9.
    Von Wright G.H.: Norm and Action. The Humanities Press, New York (1963)Google Scholar
  10. 10.
    Von Wright G.H.: ‘And Next’. Acta Philosophica Fennica 18, 293–304 (1965)Google Scholar
  11. 11.
    Von Wright G.H.: ‘And Then’. Commentationes Phisio-Mathematicae 32(7), 1–11 (1966)Google Scholar
  12. 12.
    Wajszczyk, J., Logika a czas i zmiana, Wydawnictwo WSP, 1995.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Faculty of Philosophy, Department of LogicThe John Paul II Catholic University of LublinLublinPoland

Personalised recommendations