Advertisement

Studia Logica

, Volume 95, Issue 1–2, pp 81–100 | Cite as

An Intuitionistic Model of Single Electron Interference

  • J. V. Corbett
  • T. Durt
Article

Abstract

The double slit experiment for a massive scalar particle is described using intuitionistic logic with quantum real numbers as the numerical values of the particle’s position and momentum. The model assigns physical reality to single quantum particles. Its truth values are given open subsets of state space interpreted as the ontological conditions of a particle. Each condition determines quantum real number values for all the particle’s attributes. Questions, unanswerable in the standard theories, concerning the behaviour of single particles in the experiment are answered.

Keywords

Intuitionistic logic topoidal Dedekind real numbers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adelman, M., and J.V. Corbett, ‘Quantum Mechanics as an Intuitionistic form of Classical Mechanics’, Proceedings of the Centre Mathematics and its Applications, ANU, Canberra 2001, pp. 15–29.Google Scholar
  2. 2.
    Bozic, M., D. Arsenovic, and L. Vuskovic, ‘On the (non)existence of quantum particle’s trajectories behind an interferometric grating’, Concepts of Physics, Vol. II, No. 3-4, 2005.Google Scholar
  3. 3.
    Corbett, J.V., and T. Durt, ‘Quantum Mechanics interpreted in Quantum Real Numbers’, quant-ph/0211180, 1–26, 2002.Google Scholar
  4. 4.
    Corbett J.V., Durt T.: ‘Collimation processes in quantum mechanics interpreted in quantum real numbers’. Studies in History and Philosophy of Modern Physics 40, 68–83 (2009)CrossRefGoogle Scholar
  5. 5.
    Corbett, J.V., and T. Durt, ‘Quantum Mechanics as a Space-Time Theory’, quantph/ 051220, 1–27, 2005.Google Scholar
  6. 6.
    Corbett J.V.: ‘The Pauli Problem, state reconstruction and quantum real numbers’. Reports on Mathematical Physics 57, 53–68 (2006)CrossRefGoogle Scholar
  7. 7.
    Corbett, J.V., The mathematical structure of quantum-real numbers, preprint, arXiv:math-ph/0905.0944 v1, 7 May 2009.Google Scholar
  8. 8.
    Cushing J.T.: Foundational Problems in and Methodological Lessons from Quantum Field Theory. In: Brown, H.R., Harré, R. (eds) Philosophical Foundations of Quantum Field Theory, pp. 29. Oxford University Press, Oxford (1990)Google Scholar
  9. 9.
    Feynman, R. P., R.B. Leighton, and M. Sands, Feynman Lectures on Physics, vol. 3, Addison-Wesley, Reading, MA, 1964, chap. 9.1.Google Scholar
  10. 10.
    Home, D., Conceptual Foundations of Quantum Physics, Chapter 2.3, Plenum Press, New York and London, 1997, pp. 78–83.Google Scholar
  11. 11.
    Johnstone P.T.: Topos Theory. Academic Press, New York (1977)Google Scholar
  12. 12.
    Leggett, A. J., in J. de Boer, E. Dal and O. Ulfbeck (eds.), The Lesson of Quantum Theory, Elsevier Science Publishers B.V., Amsterdam, 1986 pp. 35–57.Google Scholar
  13. 13.
    MacLane S., Moerdijk I.: Sheaves in Geometry and Logic. Springer–Verlag, New York (1994)Google Scholar
  14. 14.
    Merli P.G., Missiroli G.F., Pozzi G.: ‘On the statistical aspect of electron interference phenomena’. American Journal of Physics 44, 306–7 (1976)Google Scholar
  15. 15.
    Editorial, ‘The double-slit experiment’, Physics World, September 2002, extended article May 2003 on physicsweb.Google Scholar
  16. 16.
    Reed W., Simon B.: Methods of Mathematical Physics I: Functional Analysis. Academic Press, NewYork (1972)Google Scholar
  17. 17.
    Schmudgen, K., Unbounded Operator Algebras and Representation Theory Operator Theory: Vol. 37, Birkhauser Verlag, 1990.Google Scholar
  18. 18.
    Stout, L.N., Cahiers Top. et Geom. Diff. XVII, 295, 1976; C. Mulvey, ‘Intuitionistic Algebra and Representation of Rings’ in Memoirs of the AMS 148, 1974; W. Lawvere, ‘Quantifiers as Sheaves’, Actes Congres Intern. Math. 1, 1970.Google Scholar
  19. 19.
    Swan, R.G., The Theory of Sheaves, University of Chicago Press, Chicago and London, 1964, §3.2, pp. 29–31.Google Scholar
  20. 20.
    Tonomura A., Endo J., Matsuda T., Kawasaki T., Ezawa H.: ‘Demonstration of single-electron build-up of an interference pattern’. American Journal of Physics 57, 117–120 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of MathematicsMacquarie UniversitySydneyAustralia
  2. 2.TENA, TONAFree University of BrusselsBrusselsBelgium

Personalised recommendations