Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

States on Polyadic MV-algebras

  • 77 Accesses

  • 3 Citations

Abstract

This paper is a contribution to the algebraic logic of probabilistic models of Łukasiewicz predicate logic. We study the MV-states defined on polyadic MV-algebras and prove an algebraic many-valued version of Gaifman’s completeness theorem.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Amer M.A.: ‘Probability Logic and Measures on Epimorphic Images of Coproducts of Measurable Spaces’. Rep. Math. Logic 28, 29–52 (1994)

  2. 2.

    Chang C.C.: ‘Algebraic Analysis of Many Valued Logics’. Trans. Amer. Math. Soc. 88, 467–490 (1958)

  3. 3.

    Cignoli, R. L.O., I.M. L. D’Ottaviano, and D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer, 2000.

  4. 4.

    Daigneault, A., Théorie des modèles en logique mathématique, Montréal, 1967.

  5. 5.

    Drăgulici D., Georgescu G.: ‘Algebraic Logic for Rational Pavelka Predicate Calculus’. Math. Log. Quart. 47, 315–326 (2001)

  6. 6.

    Fenstad, J. E., ‘Representation of Probabilities Defined on First Order Languages’, in J. N. Crossley (ed.), Sets, Models and Recursion Theory, North-Holland, 1967, pp. 156-172.

  7. 7.

    Gaifman H.: ‘Concerning Measures on First Order Calculi’. Israel J. Math. 2, 1–18 (1964)

  8. 8.

    Georgescu G.: ‘Some Model Theory for Probability Structures’. Rep. Math. Logic 35, 103–113 (2001)

  9. 9.

    Georgescu G.: ‘Bosbach States on Fuzzy Structures’. Soft Computing 8, 217–230 (2004)

  10. 10.

    Hájek P., Metamathematics of Fuzzy Logic, Kluwer, 1998.

  11. 11.

    Halmos P.R.: Algebraic Logic. Chelsea Publ Comp., New York (1962)

  12. 12.

    Kroupa T.: ‘Representation and Extension of States on MV-algebras’. Arch. Math. Logic 45, 381–392 (2006)

  13. 13.

    Łukasiewicz J., Tarski A.: ‘Untersuchungen über den Aussagenkalkül’. Comptes Rendus de la Société de Sciences et de Lettres de Varsovie, iii 23, 1–21 (1930)

  14. 14.

    Mundici D.: ‘Averaging the Truth-Value in Lukasiewicz Logic’. Studia Logica 55(1), 113–127 (1995)

  15. 15.

    Riečan, B., and D. Mundici, ‘Probability on MV-algebras’, in E. Pap (ed.), Handbook of Measure Theory, I, II, North-Holland, 2002, 869–909.

  16. 16.

    Riečan, B., and T. Neubrunn, Integral, Measure, and Ordering, Kluwer, 1997.

  17. 17.

    Schwartz D.: ‘Polyadic MV-algebras’. Zeit. f.Math. Logik und Grundlagen d.Math. 26, 561–564 (1980)

  18. 18.

    Scott, D., and P. Krauss, ‘Assigning Probabilities to Logical Formulas’, in J. Hintikka and P. Suppes (eds.), Aspects of Inductive Logic, North-Holland, 1966, pp. 219–264.

Download references

Author information

Correspondence to George Georgescu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Georgescu, G. States on Polyadic MV-algebras. Stud Logica 94, 231–243 (2010). https://doi.org/10.1007/s11225-010-9233-y

Download citation

Keywords

  • polyadic MV-state
  • Gaifman MV-model