Studia Logica

, Volume 94, Issue 1, pp 47–72 | Cite as

A Contraction-free and Cut-free Sequent Calculus for Propositional Dynamic Logic

Article

Abstract

In this paper we present a sequent calculus for propositional dynamic logic built using an enriched version of the tree-hypersequent method and including an infinitary rule for the iteration operator. We prove that this sequent calculus is theoremwise equivalent to the corresponding Hilbert-style system, and that it is contraction-free and cut-free. All results are proved in a purely syntactic way.

Keywords

Contraction-free Cut-free Propositional Dynamic Logic Tree-hypersequent Proof theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberucci Luca, Gerhard Jäger: ‘About cut elimination for logics of common knowledge’. Annals of Pure and Applied Logic 133, 1–3 (2005) 73–99CrossRefGoogle Scholar
  2. 2.
    Blackburn Patrick, Maarten de Rijke, Yde Venema: Modal Logic. Cambridge University Press, Cambridge (2001)Google Scholar
  3. 3.
    Engeler Erwin: ‘Algorithmic properties of structures’. Mathematical Systems Theory 1, 183–195 (1967)CrossRefGoogle Scholar
  4. 4.
    Harel David, Dexter Kozen, Jerzy Tiuryn: Dynamic Logic. MIT Press, Cambridge (2000)Google Scholar
  5. 5.
    Hoare Charles, Anthony Richard: ‘An axiomatic basis for computer programming’. Communications of the ACM 12, 576–580 (1969)CrossRefGoogle Scholar
  6. 6.
    Jäger Gerhard, Mathis Kretz, Thomas Studer: ‘Cut-free common knowledge’. Journal of Applied Logic 5(4), 681–689 (2007)CrossRefGoogle Scholar
  7. 7.
    Knijnenburg Peter M.W., Jan van Leeuwen: ‘On models for propositional dynamic logic’. Theoretical Computer Science 91, 181–203 (1991)CrossRefGoogle Scholar
  8. 8.
    Nishimura Hirokazu, ‘Sequential method in propositional dynamic logic’. Acta Informatica 12, 377–400 (1979)CrossRefGoogle Scholar
  9. 9.
    Poggiolesi, Francesca, Sequent Calculi for Modal Logic, Ph.D Thesis, Florence, 2008.Google Scholar
  10. 10.
    Poggiolesi, Francesca, ‘The method of tree-hypersequent for modal propositional logic’, in D. Makinson, J. Malinowski, and H. Wansing, (eds.), Trends in logic: Towards mathematical philosophy, Springer, 2009, pp. 31–51.Google Scholar
  11. 11.
    Poggiolesi, Francesca, Reflecting the semantic features of S5 at the syntactic level, SILFS conference proceedings, Forthcoming, 2010.Google Scholar
  12. 12.
    Troelstra Anne Sjerp, Helmut Schwichtenberg: Basic Proof Theory. Cambridge University Press, Cambridge (1996)Google Scholar
  13. 13.
    Wansing Heinrich: Displaying Modal Logic. Kluwer Academic Publisher, Dordrecht/Boston/London (1998)Google Scholar
  14. 14.
    Yanov Joseph: ‘On equivalence of operator schemes’. Problems of Cybernetic 1, 1–100 (1959)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Center of Logic and Philosophy of Science (CLFW)Vrije Universiteit BrusselBrusselsBelgium
  2. 2.HEC Paris and IHPST (CNRS / Paris 1 / ENS)Jouy-en-JosasFrance

Personalised recommendations