Studia Logica

, 93:67 | Cite as

Dynamic Update with Probabilities

  • Johan van Benthem
  • Jelle Gerbrandy
  • Barteld Kooi
Open Access


Current dynamic-epistemic logics model different types of information change in multi-agent scenarios. We generalize these logics to a probabilistic setting, obtaining a calculus for multi-agent update with three natural slots: prior probability on states, occurrence probabilities in the relevant process taking place, and observation probabilities of events. To match this update mechanism, we present a complete dynamic logic of information change with a probabilistic character. The completeness proof follows a compositional methodology that applies to a much larger class of dynamic-probabilistic logics as well. Finally, we discuss how our basic update rule can be parameterized for different update policies, or learning methods.


probability dynamic epistemic logic update Jeffrey’s rule 


  1. 1.
    Aucher, G., ‘How our beliefs contribute to interpret actions’, 4th InternationalWorkshop of Central and Eastern Europe on Multi-Agent Systems (CEEMAS05) 2005. To appear in the Lecture Notes in Artificial Intelligence, Springer-Verlag.Google Scholar
  2. 2.
    Bacchus F. (1990) Representing and Reasoning with Probabilistic Knowledge, A Logical Approach to Probabilities. The MIT Press, Cambridge, MAGoogle Scholar
  3. 3.
    Baltag A. (2002) ‘A Logic for Suspicious Players: Epistemic Actions and Belief-Updates in Games’. Bulletin of Economic Research 54(1): 1–45CrossRefGoogle Scholar
  4. 4.
    Baltag, A., L. S. Moss, and S. Solecki, ‘The Logic of Common Knowledge, Public Announcements’, and Private Suspicions, in I. Gilboa (ed.), Proceedings of the 7th conference on theoretical aspects of rationality and knowledge (TARK 98), 1998, pp. 43–56.Google Scholar
  5. 5.
    Baltag A., Smets S. (2008) ‘Probabilistic dynamic belief revision’. Synthese 165(2): 179–202CrossRefGoogle Scholar
  6. 6.
    Carnap R. (1952) The Continuum of Inductive Methods. The University of Chicago Press, ChicagoGoogle Scholar
  7. 7.
    Fagin R., Halpern J.Y. (1993) ‘Reasoning about knowledge and probability’. Journal of the ACM 41(2): 340–367CrossRefGoogle Scholar
  8. 8.
    Fitelson, B., Studies in Bayesian Confirmation Theory, Ph. D. thesis, Department of Philosophy, University of Wisconsin, Madison, 2001.Google Scholar
  9. 9.
    Gärdenfors, P., and H. Rott, ‘Belief revision, Handbook of logic in artificial intelligence and logic programming (Vol. 4): epistemic and temporal reasoning, Oxford University Press, Oxford, UK, 1995, pp. 35–132.Google Scholar
  10. 10.
    Gerbrandy, J. D., Bisimulations on Planet Kripke, Ph. D. thesis, University of Amsterdam, 1998. ILLC Dissertation Series DS-1999-01.Google Scholar
  11. 11.
    Gierasimczuk, N., ‘Bridging learning theory and dynamic epistemic logic’, Synthese, 2009. To appear in T. Ågotnes, J. van Benthem and E. Pacuit (eds.), a special issue of Knowledge, Rationality, and Action on ‘Logic and Intelligent Interaction’.Google Scholar
  12. 12.
    Grünwald P., Halpern J.Y. (2003) ‘Updating Probabilities’. Journal of AI Research 19: 243–278Google Scholar
  13. 13.
    Halpern, J. Y., Reasoning about Uncertainty, The MIT Press, 2003.Google Scholar
  14. 14.
    Halpern J.Y., Pucella R. (2006) ‘A Logic for Reasoning about Evidence’. Journal of Artificial Intelligence Research 26: 1–34CrossRefGoogle Scholar
  15. 15.
    Halpern J.Y., Tuttle M.R. (1993) ‘Knowledge, probability, and adversaries’. Journal of the ACM 40(4): 917–962CrossRefGoogle Scholar
  16. 16.
    Hommersom A., Meyer J.-J., de Vink E. (2005) ‘Update Semantics of Security Protocols’. Synthese 142(2): 229–267CrossRefGoogle Scholar
  17. 17.
    Kelly K. (1996) The Logic of Reliable Inquiry. Oxford University Press, OxfordGoogle Scholar
  18. 18.
    Kooi B. (2003) ‘Probabilistic dynamic epistemic logic’. Journal of Logic, Language and Information 12(4): 381–408CrossRefGoogle Scholar
  19. 19.
    Liu, F., Changing for the Better: Preference Dynamics and Agent Diversity, Ph. D. thesis, University of Amsterdam, 2008. ILLC Dissertation Series DS-2008-02.Google Scholar
  20. 20.
    Plaza, J. A., ‘Logics of Public Communications’, in M. L. Emrich, M. S. Pfeifer, M. Hadzikadic, and Z. W. Ras (eds.), Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems, 1989, pp. 201–216.Google Scholar
  21. 21.
    Romeijn, J. W., ‘Dutch Books and Epistemic Events’, 2005, Talk presented at the Interfacing Probabilistic and Epistemic Update workshop in Amsterdam.Google Scholar
  22. 22.
    Sack, J., ‘Extending probabilistic dynamic epistemic logic’, Synthese 2009. To appear in T. Ågotnes, J. van Benthem and E. Pacuit (eds.), a special issue of Knowledge, Rationality, and Action on ‘Logic and Intelligent Interaction’.Google Scholar
  23. 23.
    Shafer, G., A Mathematical Theory of Evidence, Princeton University Press, 1976.Google Scholar
  24. 24.
    Shafer G. (1982) ‘Belief Functions and Parametric Models’. Journal of the Royal Statistical Society 44(3): 322–352Google Scholar
  25. 25.
    van Benthem J. (2003) ‘Conditional probability meets update logic’. Journal of Logic, Language and Information 12(4): 409–421CrossRefGoogle Scholar
  26. 26.
    van Benthem, J., J. Gerbrandy, T. Hoshi and E. Pacuit, ‘Merging frameworks for interaction’, Journal of Philosophical Logic, 2009. To appear.Google Scholar
  27. 27.
    van Benthem, J., J. Gerbrandy, and B. Kooi, ‘Dynamic Update with Probabilities’, ILLC Prepublication PP-2006-21,, 2006.
  28. 28.
    van Benthem, J., J. Gerbrandy, and E. Pacuit, ‘Merging Frameworks for Interaction: DEL and ETL’, in Dov Samet (ed.), Proceedings of TARK 11, 2007, pp. 72–82.Google Scholar
  29. 29.
    van Benthem J., van Eijck J., Kooi B. (2006) ‘Logics of Communication and Change’. Information and Computation 204(11): 1620–1662CrossRefGoogle Scholar
  30. 30.
    van der Hoek, W., Modalities for Reasoning about Knowledge and Quantities, Vrije Universiteit Amsterdam, 1992.Google Scholar
  31. 31.
    van Ditmarsch H., van der Hoek W., Kooi B. (2007) Dynamic Epistemic Logic. Springer, DordrechtGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Johan van Benthem
    • 1
    • 2
  • Jelle Gerbrandy
    • 3
  • Barteld Kooi
    • 4
  1. 1.University of AmsterdamAmsterdamthe Netherlands
  2. 2.Stanford UniversityStanfordUSA
  3. 3.Universitá di TorinoTorinoItaly
  4. 4.University of GroningenGroningenthe Netherlands

Personalised recommendations