Advertisement

Studia Logica

, Volume 92, Issue 1, pp 27–61 | Cite as

Giles’s Game and the Proof Theory of Łukasiewicz Logic

Article

Abstract

In the 1970s, Robin Giles introduced a game combining Lorenzen-style dialogue rules with a simple scheme for betting on the truth of atomic statements, and showed that the existence of winning strategies for the game corresponds to the validity of formulas in Łukasiewicz logic. In this paper, it is shown that ‘disjunctive strategies’ for Giles’s game, combining ordinary strategies for all instances of the game played on the same formula, may be interpreted as derivations in a corresponding proof system. In particular, such strategies mirror derivations in a hypersequent calculus developed in recent work on the proof theory of Łukasiewicz logic.

Keywords

dialogue games Łukasiewicz logic many-valued logics hypersequents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamson A., Giles R.: ‘A game-based formal system for Ł’. Studia Logica 1(38), 49–73 (1979)CrossRefGoogle Scholar
  2. 2.
    Aguzzoli S., Ciabattoni A.: ‘Finiteness in infinite-valued logic’. Journal of Logic, Language and Information 9(1), 5–29 (2000)CrossRefGoogle Scholar
  3. 3.
    Avron A.: ‘A constructive analysis of RM’. Journal of Symbolic Logic 52(4), 939–951 (1987)CrossRefGoogle Scholar
  4. 4.
    Baaz, M., and G. Metcalfe, ‘Herbrand’s theorem, skolemization, and proof systems for first-order Łukasiewicz logic’. To appear in Journal of Logic and Computation.Google Scholar
  5. 5.
    Chang C.C.: ‘Algebraic analysis of many-valued logics’. Transactions of the American Mathematical Society 88, 467–490 (1958)CrossRefGoogle Scholar
  6. 6.
    Ciabattoni, A., C. G. Fermüller, and G. Metcalfe, ‘Uniform Rules and Dialogue Games for Fuzzy Logics’, in Proceedings of LPAR 2004, volume 3452 of LNAI, Springer, 2005, pp. 496–510.Google Scholar
  7. 7.
    Ciabattoni, A., and G. Metcalfe, ‘Bounded Łukasiewicz logics’, in M. Cialdea Mayer and F. Pirri (eds.), Proceedings of TABLEAUX 2003, volume 2796 of LNCS, Springer, 2003, pp. 32–48.Google Scholar
  8. 8.
    Cignoli, R., I.M. L. D’Ottaviano, and D. Mundici, Algebraic Foundations of Many-Valued Reasoning, volume 7 of Trends in Logic, Kluwer, Dordrecht, 1999.Google Scholar
  9. 9.
    Cintula, P., and O. Majer, ‘Evaluation games for fuzzy logics’, in O. Majer, A.V. Pietarinen, and T. Tulenheimo (eds.), Games: Unifying Logic, Language, and Philosophy, Springer, 2009, pp. 117–138.Google Scholar
  10. 10.
    Dershowitz N., Manna Z.: ‘Proving termination with multiset orderings’. Communications of the Association for Computing Machinery 22, 465–476 (1979)Google Scholar
  11. 11.
    Esteva F., Godo L., Hájek P., Montagna F.: ‘Hoops and fuzzy logic’. Journal of Logic and Computation 13(4), 532–555 (2003)CrossRefGoogle Scholar
  12. 12.
    Fermüller, C. G., ‘Parallel dialogue games and hypersequents for intermediate logics’, in M. Cialdea Mayer and F. Pirri (eds.), Proceedings of TABLEAUX 2003, volume 2796 of LNCS, Springer, 2003, pp. 48–64.Google Scholar
  13. 13.
    Fermüller, C. G., ‘Revisiting Giles - connecting bets, dialogue games, and fuzzy logics’, in O. Majer, A. V. Pietarinen, and T. Tulenheimo (eds.), Games: Unifying Logic, Language, and Philosophy, Springer, 2009, pp. 209–227.Google Scholar
  14. 14.
    Fermüller, C. G., andA. Ciabattoni, ‘From intuitionistic logic to Gödel-Dummett logic via parallel dialogue games’, in Proceedings of the 33rd IEEE International Symposium on Multiple-Valued Logic, Tokyo, May 2003.Google Scholar
  15. 15.
    Fermüller, C. G., and R. Kosik, ‘Combining supervaluation and degree based reasoning under vagueness’, in Proceedings of LPAR 2006, volume 4246 of LNAI, Springer, 2006, pp. 212–226.Google Scholar
  16. 16.
    Giles R.: ‘A non-classical logic for physics’. Studia Logica 4(33), 399–417 (1974)Google Scholar
  17. 17.
    Giles R.: ‘Łukasiewicz logic and fuzzy set theory’. International Journal of Man-Machine Studies 8(3), 313–327 (1976)CrossRefGoogle Scholar
  18. 18.
    Giles, R., ‘A non-classical logic for physics’, in R.Wojcicki and G. Malinowski (eds.), Selected Papers on Łukasiewicz Sentential Calculi, Polish Academy of Sciences, 1977, pp. 13–51.Google Scholar
  19. 19.
    Giles R.: ‘Semantics for fuzzy reasoning’. International Journal of Man-Machine Studies 17, 401–415 (1982)CrossRefGoogle Scholar
  20. 20.
    Hähnle, R., Automated Deduction in Multiple-Valued Logics, Oxford University Press, 1993.Google Scholar
  21. 21.
    Hájek P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)Google Scholar
  22. 22.
    Lorenzen, P., ‘Logik und Agon’, in Atti Congr. Internaz. di Filosofia, Sansoni, 1960, pp. 187–194.Google Scholar
  23. 23.
    Łukasiewicz, J., and A. Tarski, ‘Untersuchungen über den Aussagenkalkül’, Comptes Rendus des Séances de la Societé des Sciences et des Lettres de Varsovie, Classe III 23, 1930.Google Scholar
  24. 24.
    Metcalfe G., Olivetti N., Gabbay D.: ‘Sequent and hypersequent calculi for abelian and Łukasiewicz logics’. ACM Transactions on Computational Logic 6(3), 578–613 (2005)CrossRefGoogle Scholar
  25. 25.
    Metcalfe, G., N. Olivetti, and D. Gabbay, Proof Theory for Fuzzy Logics, volume 36 of Applied Logic, Springer, 2008.Google Scholar
  26. 26.
    Mundici, D., ‘The logic of Ulam’s game with lies’, in C. Bicchieri and M.L. Dalla Chiara (eds.), Knowledge, belief and strategic interaction, Cambridge University Press, 1992, pp. 275–284.Google Scholar
  27. 27.
    Mundici D.: ‘Ulam’s game, Łukasiewicz logic and C*-algebras’. Fundamenta Informaticae 18, 151–161 (1993)Google Scholar
  28. 28.
    Mundici D., Olivetti N.: ‘Resolution and model building in the infinite-valued calculus of Łukasiewicz’. Theoretical Computer Science 200(1–2), 335–366 (1998)CrossRefGoogle Scholar
  29. 29.
    Olivetti N.: ‘Tableaux for Łukasiewicz infinite-valued logic’. Studia Logica 73(1), 81–111 (2003)CrossRefGoogle Scholar
  30. 30.
    Prijatelj A.: ‘Bounded contraction and Gentzen-style formulation of Łukasiewicz logics’. Studia Logica 57(2–3), 437–456 (1996)CrossRefGoogle Scholar
  31. 31.
    Ragaz, M. E., Arithmetische Klassifikation von Formelmengen der unendlichwertigen Logik, PhD thesis, ETH Zürich, 1981.Google Scholar
  32. 32.
    Rose A., Rosser J.B.: ‘Fragments of many-valued statement calculi’. Transactions of the American Mathematical Society 87, 1–53 (1958)CrossRefGoogle Scholar
  33. 33.
    Scarpellini B.: ‘Die Nichtaxiomatisierbarkeit des unendlichwertigen Prädikatenkalküls von Łukasiewicz’. Journal of Symbolic Logic 27(2), 159–170 (1962)CrossRefGoogle Scholar
  34. 34.
    Wagner, H., ‘A new resolution calculus for the infinite-valued propositional logic of Łukasiewicz’, in R. Caferra and G. Salzert (eds.), FTP 98, Technical Report E1852-GS-981, TU Wien, Austria, 1998, pp. 234–243.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institut für ComputersprachenTechnische Universität WienViennaAustria
  2. 2.Mathematics DepartmentVanderbilt UniversityNashvilleUSA

Personalised recommendations