Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Multi-Modal CTL: Completeness, Complexity, and an Application

Abstract

We define a multi-modal version of Computation Tree Logic (ctl) by extending the language with path quantifiers E δ and A δ where δ denotes one of finitely many dimensions, interpreted over Kripke structures with one total relation for each dimension. As expected, the logic is axiomatised by taking a copy of a ctl axiomatisation for each dimension. Completeness is proved by employing the completeness result for ctl to obtain a model along each dimension in turn. We also show that the logic is decidable and that its satisfiability problem is no harder than the corresponding problem for ctl. We then demonstrate how Normative Systems can be conceived as a natural interpretation of such a multi-dimensional ctl logic.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Ågotnes, T., W. van der Hoek, J.A. Rodriguez-Aguilar, C. Sierra, and M. Wooldridge, On the logic of normative systems, IJCAI 2007, pp. 1175–1180.

  2. 2.

    Ågotnes, T., W. van der Hoek, and M. Wooldridge, ‘Completeness and Complexity of Multi-Modal CTL’, in C. Areces and S. Demri (eds.), Proceedings of the 5th Workshop on Methods for Modalities (M4M5), (ENTCS), vol. 231, 2009, pp. 259–275.

  3. 3.

    Ågotnes, T., W. van der Hoek, J.A. Rodíguez-Aguilar, C. Sierra, and M. Wooldridge, ‘A Temporal Logic of Normative Systems’, in D. Makinson, J. Malinowski and H. Wansing (eds.), Towards Mathematical Philosophy, Springer, 2008, pp. 69–106.

  4. 4.

    Artikis, A., M.J. Sergot, and J.V. Pitt, ‘Specifying norm-governed computational societies’, ACM Trans. Comput. Log., 10:1, 2009.

  5. 5.

    Blackburn, P., M. de Rijke and Y. Venema, “Modal Logic,” Cambridge Tracts in Theoretical Computer Science 53, CUP, 2001.

  6. 6.

    Clarke, E. M., O. Grumberg and D. A. Peled, “Model Checking,” MIT Press, 2000.

  7. 7.

    Dignum, F., J. Broersen, V. Dignum, and J.-J.Ch. Meyer, ‘Meeting the deadline: Why, when and how’, vol. 3228 of LNAI, Springer, 2004, pp. 30–40.

  8. 8.

    Emerson, E. A., ‘Temporal and modal logic’, in J. van Leeuwen (ed.), Handbook of Theoretical Computer Science, Elsevier, 1990, pp. 996–1072.

  9. 9.

    Emerson, E. A., and J. Y. Halpern, ‘Decision procedures and expressiveness in the temporal logic of branching time’, Journal of Computer and System Sciences 30, 1985.

  10. 10.

    Fajardo, R., and M. Finger, How not to combine modal logics, in B. Prasad (ed.), IICAI, 2005, pp. 1629–1647.

  11. 11.

    Fine, K., and G. Schurz, ‘Transfer theorems for multimodal logics’, in J. Copeland (ed.), Logic and Reality: Essays on the Legacy of Arthur Prior, OUP, Oxford, 1996, pp. 169–213.

  12. 12.

    Finger M., Gabbay D.M.: ‘Adding a temporal dimension to a logic system’. Journal of Logic, Language, and Information 1, 203–233 (1992)

  13. 13.

    Finger M., Weiss M.A.: ‘The unrestricted combination of temporal logic systems’. Logic Journal of the IGPL 10, 165–189 (2002)

  14. 14.

    Gabbay, D. M., A. Kurucz, F. Wolter and M. Zakharyaschev, Many-Dimensional Modal Logics: Theory and Applications, Elsevier, 2003.

  15. 15.

    Gottlob, G, and C. Koch, Monadic queries over tree-structured data, in LICS2002, pp. 189–202.

  16. 16.

    Harel D., Kozen D., Tiuryn J.: Dynamic Logic. MIT Press, Cambridge, MA (2000)

  17. 17.

    Kracht M., Wolter F.: ‘Simulation and transfer results in modal logic — a survey’. Studia Logica 59, 149–177 (1997)

  18. 18.

    Lomuscio A., Sergot M.: ‘Deontic interpreted systems’. Studia Logica 75(1), 63–92 (2003)

  19. 19.

    Prakken H., Sergot M.: ‘Contrary-to-duty obligations’. Studia Logica 57(1), 91–115 (1996)

  20. 20.

    Sergot, M., and R. Craven, ‘The deontic component of action language nC+’, in L. Goble and J.-J. Ch. Meyer (eds.), DEON2006, LNAI 4048, 2006, pp. 222–237.

  21. 21.

    Shoham, Y., and M. Tennenholtz, ‘On social laws for artificial agent societies: Off-line design’, in P. E. Agre, and S. J. Rosenschein (eds.), Computational Theories of Interaction and Agency, MIT Press, 1996, pp. 597–618.

  22. 22.

    Van der Hoek W., Roberts M., Wooldridge M.: ‘Social Laws in Alternating Time: Effectiveness, Feasibility, and Synthesis’. Synthese 156(1), 1–19 (2007)

  23. 23.

    XML Path Language, W3C Recommendation. http://www.w3.org/TR/xpath.

  24. 24.

    Wieringa, R.J., and J.-J. Ch. Meyer, ‘Deontic logic in computer science’, J.-J. Ch. Meyer, and R. J. Wieringa (eds.), Deontic Logic in Computer Science — Normative System Specification, John Wiley & Sons, 1993, pp. 17–40.

  25. 25.

    Wooldridge, M., An Introduction to Multiagent Systems, John Wiley & Sons, 2002.

  26. 26.

    Wooldridge M., van der Hoek W.: ‘On obligations and normative ability: Towards a logical analysis of the social contract’. Journal of Applied Logic 4(3-4), 396–420 (2005)

Download references

Author information

Correspondence to Thomas Ågotnes.

Additional information

Presented by Jacek Malinowski

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ågotnes, T., Van der Hoek, W., Rodríguez-Aguilar, J.A. et al. Multi-Modal CTL: Completeness, Complexity, and an Application. Stud Logica 92, 1–26 (2009). https://doi.org/10.1007/s11225-009-9184-3

Download citation

Keywords

  • Computation Tree Logic (ctl)
  • Normative Systems
  • Social Laws