Studia Logica

, Volume 91, Issue 3, pp 383–406 | Cite as

Taking Degrees of Truth Seriously

  • Josep Maria Font


This is a contribution to the discussion on the role of truth degrees in manyvalued logics from the perspective of abstract algebraic logic. It starts with some thoughts on the so-called Suszko’s Thesis (that every logic is two-valued) and on the conception of semantics that underlies it, which includes the truth-preserving notion of consequence. The alternative usage of truth values in order to define logics that preserve degrees of truth is presented and discussed. Some recent works studying these in the particular cases of Łukasiewicz’s many-valued logics and of logics associated with varieties of residuated lattices are also presented. Finally the extension of this paradigm to other, more general situations is discussed, highlighting the need for philosophical or applied motivations in the selection of the truth degrees, due both to the interpretation of the idea of truth degree and to some mathematical difficulties.


Suszko’s Thesis many-valued logic logical values truth values truth degrees logics preserving degrees of truth semantics abstract algebraic logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Béziau, J.-Y., Recherches sur la logique universelle, Ph. D. Dissertation, Dept. of Mathematics, Université de Paris VII, 1995.Google Scholar
  2. 2.
    Béziau J.-Y.: ‘From consequence operator to universal logic: a survey of general abstract logic’. In: Béziau, J.-Y. (eds) Logica Universalis., pp. 3–17. Birkhäuser Verlag, Basel (2005)CrossRefGoogle Scholar
  3. 3.
    Blok W., Pigozzi D.: ‘Protoalgebraic logics’. Studia Logica 45, 337–369 (1986)CrossRefGoogle Scholar
  4. 4.
    Blok, W., and D. Pigozzi, Algebraizable logics, vol. 396 of Mem. Amer. Math. Soc., A.M.S., Providence, 1989.Google Scholar
  5. 5.
    Bou, F., F. Esteva, J. M. Font, A. Gil, Ll. Godo, A. Torrens, and V. Verdú, ‘Logics preserving degrees of truth from varieties of residuated lattices’, Journal of Logic and Computation , (200x). To appear.Google Scholar
  6. 6.
    Brown, D. J., and R. Suszko, ‘Abstract logics’, Dissertationes Math. (Rozprawy Mat.), 102 (1973), 9–42.Google Scholar
  7. 7.
    Burris, S., and H. P. Sankappanavar, A course in universal algebra, Springer- Verlag, New York, 1981. Out of print. A “millenium edition” is freely available from
  8. 8.
    Caleiro, C., and R. Gonçalves, ‘An algebraic perspective on valuation semantics’, 2008. Manuscript.Google Scholar
  9. 9.
    Caleiro C., Gonçalves R., Martins M.: ‘Behavioural algebraization of logics’. Studia Logica 91, 63–111 (2009)CrossRefGoogle Scholar
  10. 10.
    Caleiro C., Carnielli W., Coniglio E., Marcos M.: ‘Two’s company: “The humbug of many logical values”’. In: Béziau, J.-Y. (eds) Logica Universalis., pp. 169–189. Birkhäuser, Basel (2005)CrossRefGoogle Scholar
  11. 11.
    Cleave J.: ‘The notion of logical consequence in the logic of inexact predicates’. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 20, 307–324 (1974)CrossRefGoogle Scholar
  12. 12.
    Czelakowski, J., Protoalgebraic logics, vol. 10 of Trends in Logic - Studia Logica Library, Kluwer Academic Publishers, Dordrecht, 2001.Google Scholar
  13. 13.
    Czelakowski, J., and D. Pigozzi, ‘Amalgamation and interpolation in abstract algebraic logic’, in X. Caicedo, and Carlos H. Montenegro, (eds.), Models, algebras and proofs, vol. 203 of Lecture Notes in Pure and Applied Mathematics Series, Marcel Dekker, New York and Basel, 1998, pp. 187–265.Google Scholar
  14. 14.
    Da Costa N.C.A., Béziau J.-Y.: ‘Théorie de la valuation’. Logique et Analyse 146, 99–117 (1994)Google Scholar
  15. 15.
    Da Costa N.C.A., Béziau J.-Y., Bueno O.: ‘Malinowski and Suszko on many-valued logics: On the reduction of many-valuedness to two-valuedness’. Modern Logic 3, 272–299 (1996)Google Scholar
  16. 16.
    Font J.M.: ‘Belnap’s four-valued logic and De Morgan lattices’. Logic Journal of the IGPL 5, 413–440 (1997)CrossRefGoogle Scholar
  17. 17.
    Font, J. M., ‘On the contributions of Helena Rasiowa to mathematical logic’, Multiple-Valued Logic, 4 (1999), 159–179. See Errata in the author’s web page.Google Scholar
  18. 18.
    Font J.M.: ‘An abstract algebraic logic view of some multiple-valued logics’. In: Fitting, M., Orlowska, E. (eds) Beyond two: Theory and applications of multiplevalued logic, vol. 114 of Studies in Fuzziness and Soft Computing., pp. 25–58. Physica-Verlag, Heidelberg (2003)Google Scholar
  19. 19.
    Font J.M.: ‘Beyond Rasiowa’s algebraic approach to non-classical logics’. Studia Logica 82, 172–209 (2006)CrossRefGoogle Scholar
  20. 20.
    Font J.M.: ‘On substructural logics preserving degrees of truth’. Bulletin of the Section of Logic 36, 117–130 (2007)Google Scholar
  21. 21.
    Font J.M., Gil A., Torrens A., Verdú V.: ‘On the infinite-valued Lukasiewicz logic that preserves degrees of truth’. Archive for Mathematical Logic 45, 839–868 (2006)CrossRefGoogle Scholar
  22. 22.
    Font, J. M., and R. Jansana, A general algebraic semantics for sentential logics, vol. 7 of Lecture Notes in Logic, Springer-Verlag, 1996. Second, revised edition (2009) published by the Association for Symbolic Logic, freely available through Project Euclid at Scholar
  23. 23.
    Font J.M., Jansana R.: ‘Leibniz filters and the strong version of a protoalgebraic logic’. Archive for Mathematical Logic 40, 437–465 (2001)CrossRefGoogle Scholar
  24. 24.
    Font J.M., Jansana R., Pigozzi D.: ‘A survey of abstract algebraic logic’. Studia Logica (Special issue on Abstract Algebraic Logic, Part II) 74, 13–97 (2003)Google Scholar
  25. 25.
    Font J.M., Rodríguez G.: ‘Note on algebraic models for relevance logic’. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 36, 535–540 (1990)CrossRefGoogle Scholar
  26. 26.
    Font J.M., Rodríguez G.: ‘Algebraic study of two deductive systems of relevance logic’. Notre Dame Journal of Formal Logic 35, 369–397 (1994)CrossRefGoogle Scholar
  27. 27.
    Galatos N., Jipsen P., Kowalski T., Ono H.: Residuated lattices: an algebraic glimpse at substructural logics, vol. 151 of Studies in Logic and the Foundations of Mathematics. Elsevier, Amsterdam (2007)Google Scholar
  28. 28.
    Gil, A. J., Sistemes de Gentzen multidimensionals i lògiques finitament valorades. Teoria i aplicacions, Ph. D. Dissertation, University of Barcelona, 1996.Google Scholar
  29. 29.
    Gil, A. J., A. Torrens, and V. Verdú, ‘Lógicas de Łukasiewicz congruenciales. Teorema de la deducción’, in E. Bustos, J. Echeverría, E. Pérez Sedeño, and M. I. Sánchez Balmaseda, (eds.), Actas del I Congreso de la Sociedad de Lógica, Metodología y Filosofía de la Ciencia en España, Madrid, 1993, pp. 71–74.Google Scholar
  30. 30.
    Gonçalves, R., Behavioral Algebraization of Logics, Ph.D. thesis, Istituto Superior Técnico, Universidade Técnica de Lisboa, 2008.Google Scholar
  31. 31.
    Gottwald S.: A treatise on many-valued logics, vol. 9 of Studies in Logic and Computation. Research Studies Press, Baldock (2001)Google Scholar
  32. 32.
    Gottwald S.: ‘Mathematical fuzzy logics’. Bulletin of Symbolic Logic 14, 211–239 (2008)CrossRefGoogle Scholar
  33. 33.
    Hájek P.: Metamathematics of fuzzy logic, vol. 4 of Trends in Logic - Studia Logica Library. Kluwer, Dordrecht (1998)Google Scholar
  34. 34.
    Jansana, R., Una introducción a la lógica modal, Tecnos, Madrid, 1990.Google Scholar
  35. 35.
    Jansana R.: ‘Selfextensional logics with a conjunction’. Studia Logica 84, 63–104 (2006)CrossRefGoogle Scholar
  36. 36.
    Kracht M.: ‘Modal consequence relations’. In: Blackburn, P., van Benthem, J., Wolter, F. (eds) Handbook of Modal Logic, vol. 3 of Studies in Logic and Practical Reasoning, chap. 8., pp. 491–545. Elsevier, Amsterdam (2007)Google Scholar
  37. 37.
    Łoś J., Suszko R.: ‘Remarks on sentential logics’. Indag. Math. 20, 177–183 (1958)Google Scholar
  38. 38.
    Łukasiewicz, J., Selected Works, edited by L. Borkowski. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 1970.Google Scholar
  39. 39.
    Malinowski G.: Many-valued logics, vol. 25 of Oxford Logic Guides. Clarendon Press, Oxford (1993)Google Scholar
  40. 40.
    Miller, D., ‘Degrees of untruth’, in Proceedings of the Eighteenth International Symposium on Multiple-Valued Logic, The IEEE Computer Society, Palma de Mallorca,1988, pp. 2–3.Google Scholar
  41. 41.
    Mundici, D., ‘The logic of Ulam’s game with lies’, in C. Bicchieri, and M. L. Dalla Chiara, (eds.), Knowledge, Belief and Strategic Interaction, Cambridge Studies in Probability, Induction and Decision Theory, Cambridge University Press, 1992, pp. 275–284.Google Scholar
  42. 42.
    Nowak M.: ‘A characterization of consequence operations preserving degrees of truth’. Bulletin of the Section of Logic 16, 159–166 (1987)Google Scholar
  43. 43.
    Nowak M.: ‘Logics preserving degrees of truth’. Studia Logica 49, 483–499 (1990)CrossRefGoogle Scholar
  44. 44.
    Ono H.: ‘A study of intermediate predicate logics’. Publications of the Research Institute for Mathematical Sciences, Kyoto University 8, 619–649 (1973)CrossRefGoogle Scholar
  45. 45.
    Rasiowa H.: An algebraic approach to non-classical logics, vol 78 of Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1974)Google Scholar
  46. 46.
    Scott D.: ‘Background to formalisation’. In: Leblanc, H. (eds) Truth, syntax and modality., pp. 244–273. North-Holland, Amsterdam (1973)CrossRefGoogle Scholar
  47. 47.
    Scott, D., ‘Completeness and axiomatizability in many-valued logic’, in L. Henkin, et al., (eds.), Proceedings of the Tarski Symposium, vol. 25 of Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, 1974, pp. 411–436.Google Scholar
  48. 48.
    Suszko R.: ‘Remarks on Łukasiewicz’s three-valued logic’. Bulletin of the Section of Logic 4, 87–90 (1975)Google Scholar
  49. 49.
    Suszko R.: ‘The Fregean axiom and Polish mathematical logic in the 1920s’. Studia Logica 36, 377–380 (1977)CrossRefGoogle Scholar
  50. 50.
    Tsuji M.: ‘Many-valued logics and Suszko’s Thesis revisited’. Studia Logica 60, 299–309 (1998)CrossRefGoogle Scholar
  51. 51.
    Venema Y.: ‘Algebras and coalgebras’. In: Blackburn, P., van Benthem, J., Wolter, F. (eds) Handbook of Modal Logic, vol. 3 of Studies in Logic and Practical Reasoning, chap. 6., pp. 331–426. Elsevier, Amsterdam (2007)Google Scholar
  52. 52.
    Wansing, H., and Y. Shramko, ‘Suszko’s Thesis, inferential many-valuedness and the notion of a logical system’, Studia Logica, 88 (2008), 405–429. See Erratum in volume 89 (2008), 147.Google Scholar
  53. 53.
    Wójcicki, R., ‘Logical matrices strongly adequate for structural sentential calculi’, Bulletin de l’Académie Polonaise des Sciences, Classe III, XVII (1969), 333–335.Google Scholar
  54. 54.
    Wójcicki R.: ‘On matrix representation of consequence operations on Lukasiewicz’s sentential calculi’.. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 19, 239–247 (1973)Google Scholar
  55. 55.
    Wójcicki, R., Lectures on propositional calculi, Ossolineum, Wrocław, 1984.Google Scholar
  56. 56.
    Wójcicki, R., Theory of logical calculi. Basic theory of consequence operations, vol. 199 of Synthese Library, Reidel, Dordrecht, 1988.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Probability, Logic and Statistics, Faculty of MathematicsUniversity of BarcelonaBarcelonaSpain

Personalised recommendations