Studia Logica

, Volume 90, Issue 1, pp 43–68 | Cite as

Dialogue Games for Many-Valued Logics — an Overview

  • C. G. Fermüller


An overview of different versions and applications of Lorenzen’s dialogue game approach to the foundations of logic, here largely restricted to the realm of manyvalued logics, is presented. Among the reviewed concepts and results are Giles’s characterization of Łukasiewicz logic and some of its generalizations to other fuzzy logics, including interval based logics, a parallel version of Lorenzen’s game for intuitionistic logic that is adequate for finite- and infinite-valued Gödel logics, and a truth comparison game for infinite-valued Gödel logic.


dialogue games fuzzy logic many-valued logic hypersequents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky S., Jagadeesan R.: ‘Games and Full Completeness for Multiplicative Linear Logic’, J. Symbolic Logic 59(2), 543–574 (1994)CrossRefGoogle Scholar
  2. 2.
    Abramsky, S., and G. McCusker, ‘Game semantics’, in H. Schwichtenberg and U. Berger (eds.), Computational Logic, Springer-Verlag, 1999, pp. 1–56.Google Scholar
  3. 3.
    Avron A.: ‘Hypersequents, logical consequence and intermediate logics for concurrency’. Annals of Mathematics and Artificial Intelligence 4(3-4), 225–248 (1991)CrossRefGoogle Scholar
  4. 4.
    Baaz, M., and C. G. Fermüller, ‘Analytic Calculi for Projective Logics’, TABLEAUX 1999, Springer LNCS 1617, 36–50.Google Scholar
  5. 5.
    Barth, E. M., and E.C.W. Krabbe, From Axiom to Dialogue, De Gruyter, 1982.Google Scholar
  6. 6.
    Belnap, N.D., ‘A useful four-valued logic’, in G. Epstein, J.M. Dunn (eds.), Modern Uses of Multiple-Valued Logic, 1977, pp. 8–37.Google Scholar
  7. 7.
    Blass A.: ‘A Game Semantics for Linear Logic’. Annals of Pure and Applied Logic 56, 183–220 (1992)CrossRefGoogle Scholar
  8. 8.
    Ciabattoni, A., C. G. Fermüller, and G. Metcalfe, ‘Uniform rules and dialogue games for fuzzy logics’, LPAR 2004, Springer LNCS 3452, 2005, pp. 496–510.Google Scholar
  9. 9.
    Cignoli, R., I.M. L. D’Ottaviano, and D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer, 2000.Google Scholar
  10. 10.
    Cornelis, C., G. Deschrijver, and E. E. Kerre, ‘Advances and challenges in interval-valued fuzzy logic’, Fuzzy Sets and Systems 157(5):622–627, March 2006.Google Scholar
  11. 11.
    Cornelis, C., O. Arieli, G. Deschrijver, and E. E. Kerre, ‘UncertaintyModeling by Bilattice-Based Squares and Triangles’, IEEE Transactions on fuzzy Systems 15(2):161–175, April 2007.Google Scholar
  12. 12.
    Cornelis C., Deschrijver G., Kerre E.E.: ‘Implication in intuitionistic and interval-valued fuzzy set theory: construction, classification, application’. Intl. J. of Approximate Reasoning 35, 55–95 (2004)CrossRefGoogle Scholar
  13. 13.
    Dubois D.: ‘On ignorance and contradiction considered as truth-values’. Logic Journal of the IGPL 16(2), 195–216 (2008)CrossRefGoogle Scholar
  14. 14.
    Dummett M.: ‘A propositional calculus with denumerable matrix’. J. Symbolic Logic 24, 97–106 (1959)CrossRefGoogle Scholar
  15. 15.
    Ehrenfeucht A.: ‘An application of games to the completeness problem for formalized theories’. Fundamenta Mathematicae 49, 129–141 (1961)Google Scholar
  16. 16.
    Esteva F., Godo L., Hajek P., Montagna F.: ‘Hoops and Fuzzy Logic’. Journal of Logic and Computation 13(4), 532–555 (2003)CrossRefGoogle Scholar
  17. 17.
    Esteva, F., P. Garcia-Calvés, and L. Godo, ‘Enriched interval bilattices: An approach to deal with uncertainty and imprecision’, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 1:37–54, March 1994.Google Scholar
  18. 18.
    Felscher W.: ‘Dialogues, strategies, and intuitionistic provability’. Annals of Pure and Applied Logic 28, 217–254 (1985)CrossRefGoogle Scholar
  19. 19.
    Felscher, W., ‘Dialogues as Foundation for Intuitionistic Logic, in D. Gabbay and F. Günther (eds.), Handbook of Philosophical Logic, III, Reidel, 1986, pp. 341–372.Google Scholar
  20. 20.
    Fermüller C.G.: ‘Theories of vagueness versus fuzzy logic: Can logicians learn from philosophers?’. Neural Network World 13(5), 455–466 (2003)Google Scholar
  21. 21.
    Fermüller, C.G., Parallel Dialogue Games and Hypersequents for Intermediate Logics’, TABLEAUX 2003, LNCS, Springer 2796, 2003, pp. 48–64.Google Scholar
  22. 22.
    Fermüller, C.G., ‘Dialogue Games for Modelling Proof Search in Nonclassical Logics’, FTP’2003, International Workshop on First-Order Theorem Proving, I. Dahn, L. Vigneron (eds.), Technical Report DISC-II/10/03, U. de Politécnica de Valencia.Google Scholar
  23. 23.
    Fermüller, C.G., ‘Revisiting Giles: Connecting Bets, Dialogue Games’, and Fuzzy Logics, in O. Majer, A.-V. Pietarinen, and T. Tulenheimo (eds.), Games: Unifying Logic, Language, and Philosophy, LEUS, Springer (in press).Google Scholar
  24. 24.
    Fermüller, C.G., and A. Ciabattoni, ‘From Intuitionistic Logic to Gödel-Dummett Logic via Parallel Dialogue Games’, 33rd International Symposium on Multiple Valued Logic (ISMVL 2003), Meiji University, Tokyo, Japan, IEEE Computer Society, Los Alamitos, pp. 188–195.Google Scholar
  25. 25.
    Fermüller, C.G., and R. Kosik, ‘Combining Supervaluation and Degree Based Reasoning Under Vagueness’, LPAR 2006, LNCS 4246, Springer, 2006, pp. 212–226.Google Scholar
  26. 26.
    Fermüller, C.G., and N. Preining, ‘A Dialogue Game for Intuitionistic Fuzzy Logic Based on Comparisons of Degrees of Truth’, Proceedings of InTech‘03, 2003.Google Scholar
  27. 27.
    Fine K.: ‘Vagueness, truth and logic’. Synthése 30, 265–300 (1975)CrossRefGoogle Scholar
  28. 28.
    Giles R.: ‘A non-classical logic for physics’. Studia Logica 33(4), 399–417 (1974)CrossRefGoogle Scholar
  29. 29.
    Giles R.: ‘Łukasiewicz logic and fuzzy set theory’. International Journal of ManMachine Studies 8(3), 313–327 (1976)CrossRefGoogle Scholar
  30. 30.
    Giles, R., ‘A non-classical logic for physics’, in R.Wojcicki and G. Malinowski (eds.), Selected Papers on Łukasiewicz Sentential Calculi, Polish Academy of Sciences, 1977, pp. 13–51.Google Scholar
  31. 31.
    Ginsberg M. L.: ‘Multivalued logics: a uniform approach to reasoning in artificial intelligence’. Computational Intelligence 4(3), 265–316 (1988)CrossRefGoogle Scholar
  32. 32.
    Hájek, P.,Metamathematics of Fuzzy Logic, Kluwer, 1998.Google Scholar
  33. 33.
    Hájek, P., ‘On vagueness, truth values and fuzzy logics’, Submitted.Google Scholar
  34. 34.
    Hansen, P.G. , and V. F. Hendricks (eds.), Game Theory: 5 Questions, Automatic Press / VIP, 2007.Google Scholar
  35. 35.
    Hintikka J.: Logic, Language-Games and Information: Kantian Themes in the Philosophy of Logic. Clarendon Press, Oxford (1973)Google Scholar
  36. 36.
    Japaridze G.: ‘Introduction to computability logic’. Annals of Pure and Applied Logic 123, 1–99 (2003)CrossRefGoogle Scholar
  37. 37.
    Krabbe E.C.W.: ‘Formal Systems of Dialogue Rules’. Synthese 63, 295–328 (1985)CrossRefGoogle Scholar
  38. 38.
    Lorenzen, P. , ‘Logik und Agon’, in Atti Congr. Intern. di Filosofia, Vol. 4 (Sansoni, Firenze 1960), 1960, pp. 187–194.Google Scholar
  39. 39.
    Mundici D.: ‘Ulam’s game, Łukasiewicz logic and C*-algebras’. Fundamenta Informaticae 18, 151–161 (1993)Google Scholar
  40. 40.
    Pottinger G.: ‘Uniform, cut-free formulations of T, S4, and S5’ (abstract). Journal of Symbolic Logic 48(3), 900 (1983)Google Scholar
  41. 41.
    Rahman, S., Synthese Über Dialoge, Protologische Kategorien und andere Seltenheiten, Europäische Hochschulschriften, Peter Lang, 1993.Google Scholar
  42. 42.
    Rahman, S., and H. Rückert (eds.), ‘Special issue on ‘Dialogic Logic", Synthese127:1–2, April 2001.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institut für Computersprachen TU WienViennaAustria

Personalised recommendations