Studia Logica

, Volume 90, Issue 1, pp 25–41 | Cite as

De Finetti’s No-Dutch-Book Criterion for Gödel logic



We extend de Finetti’s No-Dutch-Book Criterion to Gödel infinite-valued propositional logic.


Gödel infinite-valued propositional logic intuitionistic logic with prelinearity probability de Finetti’s Criterion Dutch book 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguzzoli, Stefano, Brunella Gerla, and Corrado Manara, ‘Poset representation for Gödel and nilpotent minimum logics’, in Lluís Godo (ed.), Symbolic and quantitative approaches to reasoning with uncertainty. 8th European conference, ECSQARU 2005, Barcelona, Spain, July 6-8, 2005. Proceedings. Berlin: Springer. Lecture Notes in Computer Science 3571. Lecture Notes in Artificial Intelligence, 2005, pp. 662–674.Google Scholar
  2. 2.
    Aguzzoli, Stefano, Brunella Gerla, and Vincenzo Marra, ‘Defuzzifying formulas in Gödel logic through finitely additive measures’, in Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2008), 2008, pp. 1886–1893.Google Scholar
  3. 3.
    D’Antona Ottavio M., Vincenzo Marra.: ‘Computing coproducts of finitely presented Gödel algebras’,. Ann. Pure Appl. Logic 142(1-3), 202–211 (2006)CrossRefGoogle Scholar
  4. 4.
    de Finetti, Bruno, Teoria delle probabilità: sintesi introduttiva con appendice critica. Volumi primo e secondo, Giulio Einaudi Editore, Turin, 1970. Nuova Biblioteca Scientifica Einaudi, 25* et 25**. English translation in B. de Finetti, Theory of probability: a critical introductory treatment. Vol. 1 & 2. Translated by Antonio Machì and Adrian Smith. Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, London-New York-Sydney, 1974 & 1975.Google Scholar
  5. 5.
    Gerla Brunella.: ‘MV-algebras, multiple bets and subjective states’,. Internat. J. Approx. Reason., 25(1), 1–13 (2000)CrossRefGoogle Scholar
  6. 6.
    Hájek Petr.: Metamathematics of fuzzy logic, vol. 4 of Trends in Logic—Studia Logica Library. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  7. 7.
    Horn Alfred.: ‘Free L-algebras’,. J. Symbolic Logic 34, 475–480 (1969)CrossRefGoogle Scholar
  8. 8.
    Horn Alfred.: ‘Logic with truth values in a linearly ordered Heyting algebra’,. J. Symbolic Logic 34, 395–408 (1969)CrossRefGoogle Scholar
  9. 9.
    Kühr Jan., Daniele Mundici.: ‘De Finetti theorem and Borel states in [0, 1]- valued algebraic logic’,. Internat. J. Approx. Reason. 46, 3 605–616 (2007)CrossRefGoogle Scholar
  10. 10.
    Mundici Daniele.: ‘Bookmaking over infinite-valued events’,. Internat. J. Approx. Reason. 43(3), 223–240 (2006)CrossRefGoogle Scholar
  11. 11.
    Paris, Jeff, ‘A note on the Dutch Book method’, in Proceedings of the Second International Symposium on Imprecise Probabilities and their Applications (ISIPTA 2001), 2001, pp. 301–309. Available at

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Stefano Aguzzoli
    • 1
  • Brunella Gerla
    • 2
  • Vincenzo Marra
    • 3
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità degli Studi di MilanoMilanoItaly
  2. 2.Dipartimento di Informatica e ComunicazioneUniversità degli Studi dell’InsubriaVareseItaly
  3. 3.Dipartimento di Informatica e ComunicazioneUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations