Studia Logica

, Volume 89, Issue 3, pp 291–323 | Cite as

Towards a “Sophisticated” Model of Belief Dynamics. Part II: Belief Revision.

  • Brian Hill


In the companion paper (Towards a “sophisticated” model of belief dynamics. Part I), a general framework for realistic modelling of instantaneous states of belief and of the operations involving them was presented and motivated. In this paper, the framework is applied to the case of belief revision. A model of belief revision shall be obtained which, firstly, recovers the Gärdenfors postulates in a well-specified, natural yet simple class of particular circumstances; secondly, can accommodate iterated revisions, recovering several proposed revision operators for iterated revision as special cases; and finally, offers an analysis of Rott’s recent counterexample to several Gärdenfors postulates [32], elucidating in what sense it fails to be one of the special cases to which these postulates apply.


Representations of belief bounded rationality logical omniscience awareness logical locality belief dynamics iterated revision Gärdenfors postulates rational choice theory framing effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carlos E., Alchourron , Peter Gärdenfors and David Makinson (1985). ‘The logic of theory change: Partial meet contraction and revision functions’, The Journal of Symbolic Logic 50: 510–530 Google Scholar
  2. 2.
    Baltag , Alexandru and Lawrence S. Moss (2004). ‘Logic for epistemic programs’. Synthese 60: 1–59 Google Scholar
  3. 3.
    Baltag, Alexandru, Lawrence S. Moss, and Slawomir Solecki, ‘The logic of common knowledge, public announcements and private suspicions’, in I. Gilboa, (ed.), Proceedings of the 7th Conference on Theoretical Aspects of Rationality and Knowledge (TARK’98), 1998, pp. 43–56.Google Scholar
  4. 4.
    Baltag, Alexandru, and Sonja Smets, ‘Dynamic belief revision over multiagent plausibility models’, in Giacomo Bonanno, Wiebe van der Hoek, and Michael Wooldridge, (eds.), Proceedings of the 7th Conference on Logic and the Foundations of Game and Decision Theory (LOFT06), 2006, pp. 11–24.Google Scholar
  5. 5.
    Baltag, Alexandru, and Sonja Smets, ‘The logic of conditional doxastic actions: A theory of dynamic multi-agent belief revision’, in S. Artemov, and R. Parikh, (eds.), Proceedings of the Workshop on Rationality and Knowledge ESSLLI 2006, 2006, pp. 13–30.Google Scholar
  6. 6.
    Blackburn , Patrick , Maarten de Rijke and Yde Venema (2001). Modal Logic. Cambridge University Press, Cambridge Google Scholar
  7. 7.
    Darwiche , Adnan and Judea Pearl (1997). ‘On the logic of iterated belief revision’. Artificial Intelligence 89: 1–29 CrossRefGoogle Scholar
  8. 8.
    Fagin , Ronald and Joseph Y. Halpern (1988). ‘Belief, awareness, and limited reasoning’. Artificial Intelligence 34: 39–76CrossRefGoogle Scholar
  9. 9.
    Joseph Y. Halpern , Friedman and Nir (1999). ‘Belief revision: a critique’. Journal of Logic, Language, and Information 8: 401–420CrossRefGoogle Scholar
  10. 10.
    Willem Groeneveld , Gerbrandy and Jelle (1997). ‘Reasoning about information change’. Journal of Logic, Language, and Information 6: 147–169 CrossRefGoogle Scholar
  11. 11.
    Gärdenfors and Peter (1988). Knowledge in Flux : Modeling the Dynamics of Epistemic States. MIT Press, Cambridge, MA Google Scholar
  12. 12.
    Gärdenfors, Peter, and Hans Rott, ‘Belief revision’, in Gabbay, Hogger, and Robinson, (eds.), Handbook of Logic in AI and Logic Programming, vol. 4, Oxford University Press, Oxford, 1995.Google Scholar
  13. 13.
    Grove and Adam (1988). ‘Two modelings for theory change’. Journal of Philosophical Logic 17: 157–170 CrossRefGoogle Scholar
  14. 14.
    Halpern, Joseph Y., and Leandro Chaves Rêgo, ‘Interactive awareness revisited’, in Proceedings of Tenth Conference on Theoretical Aspects of Rationality and Knowledge, 2005, pp. 78–91.Google Scholar
  15. 15.
    Sven Ove and Hansson (2003). ‘Ten philosophical problems in belief revision’. Journal of Logic and Computution 13: 37–49 CrossRefGoogle Scholar
  16. 16.
    Heifetz A., Meier M. and Schipper B. (2006). ‘Interactive unawareness’. Journal of Economic Theory 130: 78–94 CrossRefGoogle Scholar
  17. 17.
    Heifetz, A., M. Meier, and B. Schipper, ‘Awareness, beliefs and games’, in Theoretical Aspects of Rationality and Knowledge XI, vol. XI, 2007.Google Scholar
  18. 18.
    Henkin, Leon, J. Donald Monk, and Alfred Tarski, Cylindrical Algebras. Part I, North-Holland, 1985.Google Scholar
  19. 19.
    Hill, Brian, Jouer avec le Faux. Recherches sur les processus mentaux à l’oeuvre dans la lecture des textes de fiction, Doctorate thesis, University Paris 1 Panthéon- Sorbonne, 2006.Google Scholar
  20. 20.
    Hill, Brian, ‘Living without state-independence of utilities’, Tech. rep., GREGHEC, 2007. 874/2007.Google Scholar
  21. 21.
    Hill, Brian, ‘The logic of awareness change’, in Proceedings of ILCLI International Worskop on Logic and Philosophy of Knowledge, Communication and Action, University of the Basque Country Press, 2007.Google Scholar
  22. 22.
    Hill, Brian, ‘Logicality: from a local point of view’, Yeditepe’de Felsefe Yearbook, 6 (2007).Google Scholar
  23. 23.
    Hintikka and Jaakko (1975). ‘Impossible possible worlds vindicated’. Journal of Philosophical Logic, 4: 475–484 CrossRefGoogle Scholar
  24. 24.
    Amos Tversky , Kahneman and Daniel (1979). ‘Prospect theory: An analysis of decision under risk’. Econometrica 47: 263–291 CrossRefGoogle Scholar
  25. 25.
    Konieczny , Sébastien and Ramón Pino Pérez (2000). ‘A framework for iterated revision’. Journal of Applied Non-Classical Logics 10(3-4): 339–367 Google Scholar
  26. 26.
    Koppelberg, S., ‘General theory of boolean algebras’, in J. D. Monk, and R. Bonnet, (eds.), Handbook of Boolean Algebras, vol. 1, North Holland, 1989.Google Scholar
  27. 27.
    David K. and Lewis (1973). Counterfactuals. Harvard University Press, Cambridge, Massachusetts Google Scholar
  28. 28.
    Abhaya C. and Nayak (1994). ‘Iterated belief change based on epistemic entrenchment’. Erkenntnis 41: 353–390 CrossRefGoogle Scholar
  29. 29.
    Rabinowicz, Wlodzimierz, ‘Stable revision, or is preservation worth preserving’, in André Fuhrmann, Hans Rott, (eds.), Logic, Action and Information: Essays on Logic in Philosophy and Artificial Intelligence, De Gruyter, Berlin, (1995), pp. 101–128.Google Scholar
  30. 30.
    Rott and Hans (2001). Change, Choice and Inference, vol. 42 of Oxford Logic Guides. Clarendon Press, Oxford Google Scholar
  31. 31.
    Rott and Hans (2003). ‘Coherence and conservatism in the dynamics of belief. part ii: Iterated belief change without dispositional coherence’. Journal of Logic and Computation 13: 111–145 CrossRefGoogle Scholar
  32. 32.
    Rott and Hans (2004). ‘A counterexample to six fundamental principles of belief formation’. Synthese 139: 225–240 CrossRefGoogle Scholar
  33. 33.
    Rott, Hans, ‘A counterexample to six fundamental principles of belief formation’, Synthese 139 (2004), 225–240. Retrieved February 20, 2006, from
  34. 34.
    Rott, Hans, ‘Shifting priorities: Simple representations for twenty-seven iterated theory change operators’, in Modality Matters: Twenty-Five Essays in Honour of Krister Segerberg, vol. 53, Uppsala Philosophical Studies, 2006, pp. 359–384.Google Scholar
  35. 35.
    Savage, Leonard, The Foundations of Statistics, Dover, New York, 1954. 2nd edn 1971.Google Scholar
  36. 36.
    Segerberg and Krister (1998). ‘Irrevocable belief revision in dynamic doxastic logic’. Notre Dame Journal of Formal Logic 39: 287–306 CrossRefGoogle Scholar
  37. 37.
    Spohn, Wolfgang, ‘Ordinal conditional functions’, in William L Harper, and Brian Skyrms, (eds.), Causation in Decision, Belief Change and Statistics, vol. II, Reidel, Dordrecht, 1988, pp. 105–134.Google Scholar
  38. 38.
    Robert C. and Stalnaker (1984). Inquiry. MIT Press, Cambridge, MA Google Scholar
  39. 39.
    Daniel Kahneman, Tversky and Amos (1986). ‘Rational choice and the framing of decisions’. Journal of Business 59: 251–278 CrossRefGoogle Scholar
  40. 40.
    van Benthem, Johan, ‘Dynamic logic for belief change’, Journal of Applied Nonclassical Logics 17 (2007), 2007.Google Scholar
  41. 41.
    Hans P. (2001). ‘Knowledge games’. Bulletin of Economic Research 53: 249–273 CrossRefGoogle Scholar
  42. 42.
    van Ditmarsch, Hans P., ‘Prolegomena to dynamic logic of belief revision’, Synthese 147 (2005), 229–275.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.GREGHEC and IHPSTHEC ParisJouy-en-JosasFrance

Personalised recommendations