Studia Logica

, Volume 89, Issue 2, pp 257–283

Finitistic and Frequentistic Approximation of Probability Measures with or without σ-Additivity



In this paper a theory of finitistic and frequentistic approximations — in short: f-approximations — of probability measures P over a countably infinite outcome space N is developed. The family of subsets of N for which f-approximations converge to a frequency limit forms a pre-Dynkin system \({{D\subseteq\wp(N)}}\). The limiting probability measure over D can always be extended to a probability measure over \({{\wp(N)}}\), but this measure is not always σ-additive. We conclude that probability measures can be regarded as idealizations of limiting frequencies if and only if σ-additivity is not assumed as a necessary axiom for probabilities. We prove that σ-additive probability measures can be characterized in terms of so-called canonical and in terms of so-called full f-approximations. We also show that every non-σ-additive probability measure is f-approximable, though neither canonically nor fully f-approximable. Finally, we transfer our results to probability measures on open or closed formulas of first-order languages.


Probability finite additivity σ-additivity frequency theory finitistic approximation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amer M.A. (1985). ‘Extension of relatively σ-additive probabilities on boolean algebras of logic’. Journal of Symbolic Logic 50: 589–596 CrossRefGoogle Scholar
  2. 2.
    Bauer H. (1978). Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie. De Gruyter, Berlin Google Scholar
  3. 3.
    Bhaskara Rao K.P.S. and Bhaskara Rao M. (1983). Theory of Charges. A Study of Finitely Additive Measures. Academic Press Inc., New York Google Scholar
  4. 4.
    Billingsley P. (1986). Probability and Measure, second edn. John Wiley & Sons, New York Google Scholar
  5. 5.
    de Finetti B. (1979). Theory of Probability. John Wiley & Sons, New York Google Scholar
  6. 6.
    Dubins L. and Savage L.J. (1965). How To Gamble If You Must. McGraw-Hill Book Comp., New York Google Scholar
  7. 7.
    Earman J. (1992). Bayes or Bust?. MIT Press, Cambridge/MA Google Scholar
  8. 8.
    Fine T. (1973). Theories of Probability. Academic Press, New York Google Scholar
  9. 9.
    Fraassen B. Van, The Scientific Image, Clarendon Press, Oxford, 1980.Google Scholar
  10. 10.
    Gaifman H. and Snir M. (1982). ‘Probabilities over rich languages’. Journal of Symbolic Logic 47: 495–548 CrossRefGoogle Scholar
  11. 11.
    Giere R.N. (1976). ‘A Laplacean formal semantics for single case propensities’. Journal of Philosophical Logic 5: 321–352 Google Scholar
  12. 12.
    Harel D. (1987). Algorithmics. Adison-Wesley, New York Google Scholar
  13. 13.
    Howson C. and Urbach P. (1993). Scientific Reasoning: The Bayesian Approach, second edn. Open Court, Chicago Google Scholar
  14. 14.
    Kadane J.B. and O’Hagan A. (1995). ‘Using finitely additive probability: Uniform distribution on the natural numbers’. Journal of the Amercian Statistical Association 90: 629–631 Google Scholar
  15. 15.
    Kelly K. (1996). The Logic of Reliable Inquiry. Oxford Univ. Press, New York Google Scholar
  16. 16.
    Kolmogorov A.N. (1950). Foundations of the Theory of Probability. Chelsea Publishing Company, New York Google Scholar
  17. 17.
    Koppelberg S. (1989). Handbook of Boolean Algebras. Vol. 1. North-Holland, Amsterdam Google Scholar
  18. 18.
    Kyburg H. (1961). Probability and the Logic of Rational Belief. Wesleyan Univ. Press, Middletown Google Scholar
  19. 19.
    Mises, R. Von, Mathematical Theory of Probability and Statistics, Academic Press, New York, 1964.Google Scholar
  20. 20.
    Pap E. (2002). Handbook of Measure Theory Vol I. Elsevier, Amsterdam Google Scholar
  21. 21.
    Schervish M.J., Seidenfeld T. and Kadane J.B. (1984). ‘The extent of nonconglomerability of finitely additive probabilities’. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 66: 205–226 CrossRefGoogle Scholar
  22. 22.
    Suppes P. (2002). Representation and Invariance of Scientific Structures. CSLI Publications, Stanford Google Scholar
  23. 23.
    Werner D. (1997). Funktionalanalysis. Springer, Berlin Google Scholar
  24. 24.
    Williamson J. (1999). ‘Countable additivity and subjective probability’. British Journal for the Philosophy of Science 50: 401–416 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of DuesseldorfDuesseldorfGermany
  2. 2.Departments of Philosophy and MathematicsUniversity of BristolBristolUnited Kingdom

Personalised recommendations