Studia Logica

, Volume 89, Issue 2, pp 187–211

A Dynamic-Logical Perspective on Quantum Behavior

Article
  • 78 Downloads

Abstract

In this paper we show how recent concepts from Dynamic Logic, and in particular from Dynamic Epistemic logic, can be used to model and interpret quantum behavior. Our main thesis is that all the non-classical properties of quantum systems are explainable in terms of the non-classical flow of quantum information. We give a logical analysis of quantum measurements (formalized using modal operators) as triggers for quantum information flow, and we compare them with other logical operators previously used to model various forms of classical information flow: the “test” operator from Dynamic Logic, the “announcement” operator from Dynamic Epistemic Logic and the “revision” operator from Belief Revision theory. The main points stressed in our investigation are the following: (1) The perspective and the techniques of “logical dynamics” are useful for understanding quantum information flow. (2) Quantum mechanics does not require any modification of the classical laws of “static” propositional logic, but only a non-classical dynamics of information. (3) The main such non-classical feature is that, in a quantum world, all information-gathering actions have some ontic side-effects. (4) This ontic impact can affect in its turn the flow of information, leading to non-classical epistemic side-effects (e.g. a type of non-monotonicity) and to states of “objectively imperfect information”. (5) Moreover, the ontic impact is non-local: an information-gathering action on one part of a quantum system can have ontic side-effects on other, far-away parts of the system.

Keywords

Dynamic Quantum Logic Philosophy of Quantum Information Dynamic Epistemic Logic Logical Dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky, S., and B. Coecke, ‘A Categorical Semantics of Quantum Protocols’, in the proceedings of the 19th IEEE conference on Logic in Computer Science (LiCS’04). Available at arXiv:quant-ph/0402130.Google Scholar
  2. 2.
    Aerts, D., ‘Description of compound physical systems and logical interaction of physical systems’, in E.G. Beltrametti, and B. C. van Fraassen (eds.), Current Issues on Quantum Logic, Ettore Majorana, International Science Series, Physical Sciences, vol. 8. Dordrecht: Kluwer Academic, 1981, pp. 381–405Google Scholar
  3. 3.
    Amira H., Coecke B. and Stubbe I. (1998). ‘How Quantales Emerge by Introducing Induction within the Operational Approach’. Helvetica Physica Acta 71: 554–572 Google Scholar
  4. 4.
    Baltag A. and Moss L. (2004). ‘Logics for Epistemic Programs’. Synthese 139: 165–224 CrossRefGoogle Scholar
  5. 5.
    Baltag, A., L. Moss, and H. van Ditmarsch, ‘Epistemic Logic and Information Update’, Handbook on the Philosophy of Information, in press.Google Scholar
  6. 6.
    Baltag, A., and S. Smets, ‘Complete Axiomatizations of Quantum Actions’, International Journal of Theoretical Physics 44(12):2267–2282, 2005. Available at (http://www.vub.ac.be/CLWF/SS/IQSA.pdf)
  7. 7.
    Baltag, A., and S. Smets, ‘The Logic of Quantum Programs’, in P. Selinger (ed.), Proceedings of the 2nd International Workshop on Quantum Programming Languages (QPL2004), TUCS General Publication 33:39–56 Turku Center for Computer Science, 2004. PHILSCI00001799Google Scholar
  8. 8.
    Baltag, A., and S. Smets, ‘LQP: The Dynamic Logic of Quantum Information’, in Mathematical Structures in Computer Science, Special Issue on Quantum Programming Languages 16(3):491–525, 2006.Google Scholar
  9. 9.
    Baltag, A., and S. Smets, ‘What can Logic Fearn from Quantum Mechanics?’, paper presented at ECAP2005, available at (http://www.vub.ac.be/CLWF/SS/ECAP.pdf)
  10. 10.
    Baltag, A., and S. Smets, ‘Conditional Doxastic Models: A Qualitative Approach to Dynamic Belief Revision’, in G. Mints and R. de Queiroz (eds.), Electronic Notes in Theoretical Computer Science 165:5–21, 2006.Google Scholar
  11. 11.
    Baltag, A., and S. Smets, ‘The Logic of Conditional Doxastic Actions: A Theory of Dynamic Multi-Agent Belief Revision’, in S. Artemov and R. Parikh (eds.), Proceedings of the Workshop on Rationality and Knowledge, ESSLLI 2006.Google Scholar
  12. 12.
    Baltag, A., and S. Smets, ‘Dynamic Belief Revision over Multi-Agent Plausibility Models’, in G. Bonanno, W. van de Hoek, and M. Woolridge (eds.), 7th Conference on Logic and the Foundations of Game and Decision, Liverpool, 2006.Google Scholar
  13. 13.
    Baltag, A., and S. Smets, ‘A Qualitative Theory of Dynamic Interactive Belief Revision’, Submitted for publication to G. Bonanno, W. van der Hoek, and M.Wooldridge (eds.), Texts in Logic and Games, Amsterdam University Press.Google Scholar
  14. 14.
    Baltag, A., and S. Smets, ‘Probabilistic Dynamic Belief Revision’, to appear in J. van Benthem, S. Ju, and F. Veltman (eds.), College Publications, London 2007.Google Scholar
  15. 15.
    Bell J.S. (1964). ‘On the Einstein Podolsky Rosen Paradox’. Physics 1: 195–200 Google Scholar
  16. 16.
    van Benthem, J., ‘Dynamic Logic for Belief Revision’, ILLC Tech Report. DARE electronic archive, University of Amsterdam, 2006. To appear in Journal of Applied Non-Classical Logics.Google Scholar
  17. 17.
    van Benthem J. (1996). Exploring Logical Dynamics, Studies in Logic, Language and Information. CSLI Publications, Stanford Google Scholar
  18. 18.
    Birkhoff G. and von Neumann J. (1936). ‘The Logic of Quantum Mechanics’. Annals of Mathematics 37: 823–843CrossRefGoogle Scholar
  19. 19.
    Coecke, B., ‘The Logic of Entanglement’, Research Report, March 2004, arXiv:quant-ph/0402014.Google Scholar
  20. 20.
    Coecke, B., D.J. Moore, and S. Smets, ‘Logic of Dynamics & Dynamics of Logic; Some Paradigm Examples’, in S. Rahman, J. Symons, D.M. Gabbay, and J.P. Van Bendegem (eds.), Logic, Epistemology and the Unity of Science 527–556, 2004.Google Scholar
  21. 21.
    Coecke B., Moore D.J. and Stubbe I. (2001). ‘Quantaloids Describing Causation and Propagation for Physical Properties’. Foundations of Physics Letters 14: 357–367. arXiv:quant-ph/0009100 CrossRefGoogle Scholar
  22. 22.
    Coecke B. and Smets S. (2004). ‘The Sasaki Hook is not a [Static] Implicative Connective but Induces a Backward [in Time] Dynamic One that Assigns Causes’. International Journal of Theoretical Physics 43: 1705–1736. (arXiv: quant-ph/0111076) CrossRefGoogle Scholar
  23. 23.
    Coecke B. and Stubbe I. (1999). ‘On a Duality of Quantales Emerging from an Operational Resolution’. International Journal of Theoretical Physics 38: 3269–3281 CrossRefGoogle Scholar
  24. 24.
    Daniel W. (1982). ‘On the Non-Unitary Evolution of Quantum Systems’. Helvetica Physica Acta 55: 330–338 Google Scholar
  25. 25.
    Daniel W. (1989). ‘Axiomatic Description of Irreversible and Reversible Evolution of a Physical System’. Helvetica Physica Acta 62: 941–968 Google Scholar
  26. 26.
    Einstein A., Podolsky B. and Rosen N. (1935). ‘Can Quantum Mechanical Description of Reality Be Considered Complete?’. Physical Review 47: 777–80 CrossRefGoogle Scholar
  27. 27.
    Fagin, R., J. Halpern, Y. Moses, and M. Vardi, Reasoning about Knowldege, MIT Press, 1995.Google Scholar
  28. 28.
    Faure CL.-A., Moore D.J. and Piron C. (1995). ‘Deterministic Evolutions and Schrodinger Flows’. Helvetica Physica Acta 68: 150–157 Google Scholar
  29. 29.
    Gärdenfors P. (1988). Knowledge in Flux. MIT Press, Cambridge MA Google Scholar
  30. 30.
    Harel, D., D. Kozen, and J. Tiuryn, Dynamic Logic, MIT Press, 2000.Google Scholar
  31. 31.
    Hughes R.I.G. (1989). The Structure and Interpretation of Quantum Mechanics. Harvard University Press, Massachusetts Google Scholar
  32. 32.
    Maudlin, T., Quantum Non-Locality and Relativity, Blackwell Oxford, 1994.Google Scholar
  33. 33.
    Pauli, W., Handbuch der Physik, Vol.5, Part 1: Prinzipien der Quantentheorie 1, 1958; English translation by P. Achuthan and K. Venkatsesan, General Principles of Quantum Mechanics, Springer Verlag, Berlin, 1980.Google Scholar
  34. 34.
    Piron C. (1976). Foundations of Quantum Physics. W.A. Benjamin Inc., Massachusetts Google Scholar
  35. 35.
    Smets, S., ‘From Intuitionistic Logic to Dynamic Operational Quantum Logic’, Poznan Studies in Philosophy and the Humanities, vol. 91, 2006.Google Scholar
  36. 36.
    Spekkens, R.W., ‘In defense of the epistemic view of quantum states: a toy theory’, arXiv:quant-ph/0401052v2 ,2005.Google Scholar
  37. 37.
    Valckenborgh, F., ‘Compound Systems in Quantum Axiomatics’, Doctoral Thesis, Vrije Universiteit Brussel, 2001.Google Scholar
  38. 38.
    von Neumann, J., Grundlagen der Quantenmechanik, Springer Verlag, Berlin, 1932. (English translation: Mathematical Foundations of Quantum Mechanics, Princeton University Press, New Jersey, 1996)Google Scholar
  39. 39.
    Zeilinger A. (1999) ‘A Foundational Principle for Quantum Mechanics’. Foundations of Physics 29(4):631-643CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Computing LaboratoryOxford UniversityOxfordUK
  2. 2.Center for Logic and Philosophy of ScienceVrije Universiteit BrusselBrusselBelgium
  3. 3.IEG, Research Group on the Philosophy of InformationOxford UniversityOxfordUK

Personalised recommendations