Studia Logica

, Volume 89, Issue 2, pp 163–186 | Cite as

Axiomatizing Relativistic Dynamics without Conservation Postulates

  • H. Andréka
  • J. X. Madarász
  • I. Németi
  • G. Székely


A part of relativistic dynamics is axiomatized by simple and purely geometrical axioms formulated within first-order logic. A geometrical proof of the formula connecting relativistic and rest masses of bodies is presented, leading up to a geometric explanation of Einstein’s famous E = mc 2. The connection of our geometrical axioms and the usual axioms on the conservation of mass, momentum and four-momentum is also investigated.


axiomatization relativistic dynamics first-order logic equivalence of mass and energy foundation of relativity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andréka H., Burmeister P. and Németi I. (1981). ‘Quasivarieties of partial algebras—a unifying approach towards a two-valued model theory for partial algebras’. Studia Sci. Math. Hungar. 16: 325–372 Google Scholar
  2. 2.
    Andréka, H., J.X. Madarász, and I. Németi, ‘Logical axiomatizations of spacetime; samples from the literature’, in A. Prékopa and E. Molnár (eds.), Non-Euclidean Geometries: János Bolyai Memorial Volume, Springer, 2006, pp. 155–185.
  3. 3.
    Andréka, H., J.X. Madarász, and I. Németi, ‘On the logical structure of relativity theories’, Research report, Alfréd Rényi Institute of Mathematics, Hungar. Acad. Sci., Budapest, 2001. With contributions from A. Andai, G. Sági, I. Sain and Cs. Tőke. 1200 pp.
  4. 4.
    Andréka, H., J.X. Madarász, and I. Németi, ‘Logic of space-time and relativity’, in Handbook of Spatial Logics, Springer, 2007, pp. 607–711.
  5. 5.
    Andréka, H., J.X. Madarász, I. Németi, and G. Székely, E = mc 2 derived from geometrical axioms, Research report, Alfréd Rényi Institute of Mathematics, Hungar. Acad. Sci., Budapest, 2007.Google Scholar
  6. 6.
    Andréka, H., I. Németi, and C. W¨utrich, ‘A twist in the geometry of rotating black holes: seeking the cause of acausality’, General Relativity and Gravitation, to appear.Google Scholar
  7. 7.
    Ax J. (1978). ‘The elementary foundations of spacetime’. Found. Phys. 8(7-8): 507–546 CrossRefGoogle Scholar
  8. 8.
    Chang, C.C., and H.J. Keisler, Model Theory, North–Holland, Amsterdam, 1973, 1990.Google Scholar
  9. 9.
    d’Inverno R. (1992). Introducing Einstein’s Relativity. Clarendon, Oxford Google Scholar
  10. 10.
    Ferreirós J. (2001). ‘The road to modern logic—an interpretation’. B. Symb. Log. 7: 441–484 CrossRefGoogle Scholar
  11. 11.
    Friedman, H., ‘On foundational thinking 1’, Posting in FOM (Foundations of Mathematics) Archives (January 20, 2004).
  12. 12.
    Friedman, H., ‘On foundations of special relativistic kinematics 1’, Posting No 206 in FOM (Foundations of Mathematics) Archives. (January 21, 2004).
  13. 13.
    Henkin, L., P. Suppes, and A. Tarski (eds.), The axiomatic method with special reference to geometry and physics, Studies in Logic and the Foundations of Mathematics, North–Holland, Amsterdam, 1959.Google Scholar
  14. 14.
    Hilbert, D., ‘Mathematische Behandlung der Axiome der Physik’, Akad. Wiss. Göttingen, 1900, pp. 272–273.
  15. 15.
    Hilbert, D., ‘ Über den Satz von der Gleichheit der Basiswinkel im gleichschenkligen Dreieck’, Proc. London Math. Soc. 35:50–68, 1902/1903.Google Scholar
  16. 16.
    Madarász, J. X., Logic and relativity (in the light of definability theory), PhD thesis, Eötvös Loránd Univ., Budapest, 2002.
  17. 17.
    Madarász J.X., Németi I. and Székely G. (2006). ‘Twin paradox and the logical foundation of relativity theory’. Foundations of Physics 36(5): 681–714 arXiv:grqc/0504118CrossRefGoogle Scholar
  18. 18.
    Pambuccian, V., ‘Axiomatizations of hyperbolic and absolute geometries’, in A. Prékopa and E. Molnár (eds.), Non–Euclidean Geometries: János Bolyai Memorial Volume, Springer, 2006, pp. 119–153.Google Scholar
  19. 19.
    Rindler, W., Relativity: Special, General, and Cosmological, Oxford University Press, 2001.Google Scholar
  20. 20.
    Rothenstein, B., and S. Popescu, ‘Relativistic dynamics without conservation laws’, arXiv:physics/0605203v1, May 2006.Google Scholar
  21. 21.
    Simpson, S.G. (ed.), Reverse Mathematics 2001, Lecture Notes in Logic. Association for Symbolic Logic, 2005.Google Scholar
  22. 22.
    Suppes, P., ‘Axioms for relativistic kinematics with or without parity’, in Henkin et al. [13].Google Scholar
  23. 23.
    Suppes P. (1968). ‘The desirability of formalization in science’. J. Philos. 65: 651–664 CrossRefGoogle Scholar
  24. 24.
    Székely, G., First-order Logic Investigation of Special Relativity extended to Accelerated Observers, PhD thesis, Eötvös Loránd Univ., Budapest, 2008. in preparation.Google Scholar
  25. 25.
    Väänänen J. (2001). ‘Second-order logic and foundations of mathematics’. B. Symb. Log. 7: 504–520 CrossRefGoogle Scholar
  26. 26.
    Woleński, J., ‘First-order logic: (philosophical) pro and contra’, in V. F. Hendricks et al. (eds.), First-Order Logic Revisited, Logos Verlag, Berlin, 2004, pp. 369–398.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • H. Andréka
    • 1
  • J. X. Madarász
    • 1
  • I. Németi
    • 1
  • G. Székely
    • 1
  1. 1.Alfréd Rényi Institute of Mathematics of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations