Studia Logica

, Volume 88, Issue 3, pp 325–348 | Cite as

Constructive Logic with Strong Negation is a Substructural Logic. I

Article

Abstract

The goal of this two-part series of papers is to show that constructive logic with strong negation N is definitionally equivalent to a certain axiomatic extension NFLew of the substructural logic FLew. In this paper, it is shown that the equivalent variety semantics of N (namely, the variety of Nelson algebras) and the equivalent variety semantics of NFLew (namely, a certain variety of FLew-algebras) are term equivalent. This answers a longstanding question of Nelson [30]. Extensive use is made of the automated theorem-prover Prover9 in order to establish the result.

The main result of this paper is exploited in Part II of this series [40] to show that the deductive systems N and NFLew are definitionally equivalent, and hence that constructive logic with strong negation is a substructural logic over FLew.

Keywords

Constructive logic strong negation substructural logic Nelson algebra FLew-algebra residuated lattice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balbes R., Dwinger P. (1974). Distributive Lattices. University of Missouri Press, ColumbiaGoogle Scholar
  2. 2.
    Bignall, R. J., and M. Spinks, ‘On binary discriminator varieties, I: Implicative BCS-algebras’, International Journal of Algebra and Computation, To appear.Google Scholar
  3. 3.
    Blok,W. J., and D. Pigozzi, ‘Abstract Algebraic Logic and the Deduction Theorem’, Manuscript, 2001.Google Scholar
  4. 4.
    Blok W.J., Raftery J.G. (1995). ‘On the quasivariety of BCK-algebras and its subvarieties’. Algebra Universalis 33, 68–90CrossRefGoogle Scholar
  5. 5.
    Blok W.J., Raftery J.G. (1997). ‘Varieties of commutative residuated integral pomonoids and their residuation subreducts’. Journal of Algebra 190, 280– 328CrossRefGoogle Scholar
  6. 6.
    Blount K., Tsinakis C. (2003). ‘The structure of residuated lattices’. International Journal of Algebra and Computation 13, 437–461CrossRefGoogle Scholar
  7. 7.
    Brignole D. (1963). ‘Axiomatización de un N-reticulado’. Revista de la Union Matemática Argentina XXI, 147–148Google Scholar
  8. 8.
    Brignole D. (1969). ‘Equational characterisation of Nelson algebra’. Notre Dame Journal of Formal Logic 10, 285–297CrossRefGoogle Scholar
  9. 9.
    Busaniche, M. and R. Cignoli, ‘Constructive logic with strong negation as a substructural logic’, Submitted, 2007.Google Scholar
  10. 10.
    Burris, S., and H.P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics, no. 78, Springer-Verlag, New York, 1981.Google Scholar
  11. 11.
    Castiglioni, J. L., M. Menni, and M. Sagastume, ‘On some categories of involutive centered residuated lattices’, Submitted, 2007.Google Scholar
  12. 12.
    Chajda I., Halaš R. (2002). ‘Algebraic properties of pre-logics’. Mathematica Slovaca 52, 157–175Google Scholar
  13. 13.
    Chajda I., Halaš R., Rosenberg I.G. (1999). ‘Ideals and the binary discriminator in universal algebra’. Algebra Universalis 42, 239–251CrossRefGoogle Scholar
  14. 14.
    Cignoli R. (1986). ‘The class of Kleene algebras satisfying an interpolation property and Nelson algebras’. Algebra Universalis 23, 262–292CrossRefGoogle Scholar
  15. 15.
    Cornish W.H. (1980). ‘Varieties generated by finite BCK-algebras’. Bulletin of the Australian Mathematical Society 22, 411–430CrossRefGoogle Scholar
  16. 16.
    Cornish, W. H., ‘On Iséki’s BCK-algebras’, in P. Schultz, C. E. Praeger, and R. P. Sullivan (eds.), Algebraic Structures and Applications: Proceedings of the First Western Australian Conference on Algebra, Lecture Notes in Pure and Applied Mathematics, no. 74, Marcel Dekker, New York, 1982, pp. 101–122.Google Scholar
  17. 17.
    Czelakowski J., Pigozzi D. (2004). ‘Fregean logics’. Annals of Pure and Applied Logic 127, 17–76CrossRefGoogle Scholar
  18. 18.
    Figallo A. (1989). ‘Notes on generalized N-lattices’. Revista de la Union Matemática Argentina 35, 61–66Google Scholar
  19. 19.
    Galatos N., Ono H. (2006). ‘Algebraization, parameterized local deduction theorem and interpolation for substructural logics over FL’. Studia Logica 83, 279–308CrossRefGoogle Scholar
  20. 20.
    Gyuris, V., ‘Variations of Algebraizability’, Ph. D. thesis, The University of Illinois at Chicago, 1999.Google Scholar
  21. 21.
    Hart J.B., Rafter L., Tsinakis C. (2002). ‘The structure of commutative residuated lattices’. International Journal of Algebra and Computation 12, 509–524CrossRefGoogle Scholar
  22. 22.
    Higgs D. (1984). ‘Residuated commutative monoids with identity element as least element do not form an equational class’. Mathematica Japonica 29, 69–75Google Scholar
  23. 23.
    Hong S.M., Jun Y.B., Öztürk M.A. (2003). ‘Generalisations of BCK-algebras’. Scientiae Mathematica Japonica 58, 603–611Google Scholar
  24. 24.
    Idziak P. (1984). ‘Lattice operations in BCK-algebras’. Mathematica Japonica 29, 839–846Google Scholar
  25. 25.
    Iséki K., Tanaka S. (1978). ‘An introduction to the theory of BCK-algebras’. Mathematica Japonica 23, 1–26Google Scholar
  26. 26.
    Kowalski, T., and H. Ono, ‘Residuated Lattices: An Algebraic Glimpse at Logics without Contraction’, Manuscript, 2000, 67 pp.Google Scholar
  27. 27.
    McCune, W., Prover 9, http://www.cs.unm.edu/~mccune/prover9, 2007.
  28. 28.
    McCune, W., and R. Padmanabhan, Automated Deduction in Equational Logic and Cubic Curves, Lecture Notes in Computer Science (AI subseries), Springer-Verlag, Berlin, 1996.Google Scholar
  29. 29.
    Nelson, D., ‘Negation and the separation of concepts in constructive systems’, in Constructivity in Mathematics: Proceedings of a conference held at Amsterdam 1957, North-Holland, Amsterdam, 1959, pp. 208–225.Google Scholar
  30. 30.
    Nelson, D., Review of ‘Caractérisation des algèbres de Nelson par des égalités’, Notas de lógica matematica, no. 20, Instituto de Mathematica, Universidad Nacional del Sur, Bahía Blanca (1964), in Journal of Symbolic Logic 34 (1969), 119.Google Scholar
  31. 31.
    Ono H., Komori Y. (1985). ‘Logics without the contraction rule’. Journal of Symbolic Logic 50: 169–201CrossRefGoogle Scholar
  32. 32.
    Ono, H., ‘Logics without contraction rule and residuated lattices I’, To appear in Festschrift of Prof. R. K. Meyer.Google Scholar
  33. 33.
    Ono, H., ‘Substructural logics and residuated lattices—an introduction’, in Trends in Logic: 50 Years of Studia Logica, Kluwer Academic Publishers, Dordrecht, 2003, pp. 193–228.Google Scholar
  34. 34.
    Patterson, A., ‘A logical treatment of constructive duality’, Manuscript, 1998.Google Scholar
  35. 35.
    Rasiowa, H., An Algebraic Approach to Non-Classical Logics, Studies in Logic and the Foundations of Mathematics, no. 78, North-Holland Publishing Company, Amsterdam, 1974.Google Scholar
  36. 36.
    Schroeder-Heister, P., and Došen, K. (eds.), Substructural Logics, Oxford University Press, 1993.Google Scholar
  37. 37.
    Sendlewski A. (1984). ‘Some investigations of varieties of \({\mathcal{N}}\) -lattices’. Studia Logica 43, 257–280CrossRefGoogle Scholar
  38. 38.
    Spinks M. (2004). ‘Ternary and quaternary deductive terms for Nelson algebras’. Algebra Universalis 51, 125–136CrossRefGoogle Scholar
  39. 39.
    Spinks, M., R. J. Bignall, and R. Veroff, ‘On the poset structure of n-potent right ideal commutative BCK-algebras’, In preparation, 2008.Google Scholar
  40. 40.
    Spinks, M. and R. Veroff, ‘Constructive logic with strong negation is a substructural logic, II’, Studia Logica, To appear.Google Scholar
  41. 41.
    Spinks, M. and R. Veroff, Constructive logic with strong negation is a substructural logic, I and II: Web support. http://www.cs.unm.edu/~veroff/CLSN, 2008.
  42. 42.
    Spinks M., Veroff R. (2007). ‘Characterisations of Nelson algebras’. Revista de la Union Mathemática Argentina 48, 27–39Google Scholar
  43. 43.
    Thomason R.H. (1969). ‘A semantical study of constructible falsity’. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 15, 247–257CrossRefGoogle Scholar
  44. 44.
    Vakarelov D. (1977). ‘Notes on N-lattices and constructive logic with strong negation’. Studia Logica 36: 109–125CrossRefGoogle Scholar
  45. 45.
    van Alten, C. J., and J. G. Raftery, ‘On the lattice of varieties of residuation algebras’, Algebra Universalis (1999), 283–315.Google Scholar
  46. 46.
    van Alten C.J., Raftery J.G. (2004). ‘Rule separation and embedding theorems for logics without weakening’. Studia Logica 76, 241–274CrossRefGoogle Scholar
  47. 47.
    Veroff R. (2001). ‘Solving open questions and other challenge problems using proof sketches’. Journal of Automated Reasoning 27, 157–174CrossRefGoogle Scholar
  48. 48.
    Viglizzo, I. D., ‘Algebras de Nelson’, Tesis de Magister en Matemática, Universidad Nacional del Sur, Bahía Blanca, 1999.Google Scholar
  49. 49.
    Wójcicki, R., Theory of Logical Calculi, Synthese Library, no. 199, Kluwer Academic Publishers, Dordrecht, 1988.Google Scholar
  50. 50.
    Wroński A. (1983). ‘BCK-algebras do not form a variety’. Mathematica Japonica 28, 211–213Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of EducationUniversity of CagliariCagliariItaly
  2. 2.Department of Computer ScienceUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations