Studia Logica

, Volume 87, Issue 2–3, pp 253–268

Applying Pregroups to Italian Statements and Questions

Article
  • 46 Downloads

Abstract

We know from the literature in theoretical linguistics that interrogative constructions in Italian have particular syntactic properties, due to the liberal word order and the rich inflectional system. In this paper we show that the calculus of pregroups represents a flexible and efficient computational device for the analysis and derivation of Italian sentences and questions. In this context the distinction between direct vs. indirect statements and questions is explored.

Keywords

Pregroup inflection statement question wh-question 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrusci V.M., Ruet P. (2000). ‘Non-commutative logic I: the multiplicative fragment’. Annals of Pure and Applied Logic 101:29–64CrossRefGoogle Scholar
  2. 2.
    Bargelli, D., and J. Lambek, ‘An algebraic approach to French sentence structure’, in P. de Groote, G. Morrill, and C. Retoré (eds.), Logical Aspects of Computational Linguistics, Springer-Verlag, Berlin, 2001, pp. 62–78.Google Scholar
  3. 3.
    Buszkowski,W., ‘Lambek grammars based on pregroups’, in P. de Groote, G. Morrill and C. Retoré (eds.), Logical Aspects of Computational Linguistics, Springer-Verlag, Berlin, 2001, pp. 95–109.Google Scholar
  4. 4.
    Casadio, C., and J. Lambek, ‘An algebraic analysis of clitic pronouns in Italian’, in P. de Groote, G. Morrill and C. Retoré (eds.), Logical Aspects of Computational Linguistics, Springer-Verlag, Berlin, 2001, pp. 110–124.Google Scholar
  5. 5.
    Casadio C., Lambek J. (2002). ‘A tale of four grammars’. Studia Logica 71(2):315–329CrossRefGoogle Scholar
  6. 6.
    Casadio C., Lambek J. (2005). ‘A computational algebraic approach to Latin grammar’. Research on Language and Computation 3:45–60CrossRefGoogle Scholar
  7. 7.
    Graffi, G., Sintassi. Le strutture del linguaggio, Il Mulino, Bologna, 1994.Google Scholar
  8. 8.
    Kislak, A., ‘Pregroups versus English and Polish grammar’, in V. M. Abrusci, and C. Casadio (eds.), New Perspectives in Logic and Formal Linguistics, Bulzoni Editore, Roma, 2002, pp. 129–154.Google Scholar
  9. 9.
    Lambek J. (1979). ‘A mathematician looks at Latin conjugation’. Theoretical Linguistics 6:221-234CrossRefGoogle Scholar
  10. 10.
    Lambek, J., ‘Type grammars revisited’, in A. Lecomte, F. Lamarche, and G. Perrier (eds.), Logical Aspects of Computational Linguistics, Springer LNAI 1582, 1999, pp. 1–27.Google Scholar
  11. 11.
    Lambek J. (2000). ‘Type grammar meets German word order’. Theoretical Linguistics 26:19–30CrossRefGoogle Scholar
  12. 12.
    Lambek J. (2001). ‘Type grammars as pregroups’. Grammars 4:21–39CrossRefGoogle Scholar
  13. 13.
    Lambek J. (2004). ‘A computational algebraic approach to English grammar’. Syntax 7(2):128–147CrossRefGoogle Scholar
  14. 14.
    Lambek, J., ‘Invisible endings of English adjectives and nouns’, Linguistic Analysis, 2004/2007.Google Scholar
  15. 15.
    Moortgat, M., and R. T. Oehrle, ‘Pregroups and type-logical grammar: searching for convergence’, in C. Casadio, P. J. Scott, and R. A. G. Seely (eds.), Language and Grammar, CSLI, Stanford, 2005, pp. 141–160.Google Scholar
  16. 16.
    Preller, A., ‘Categorical semantics for pregroup grammar’, paper presented at LACL 2005.Google Scholar
  17. 17.
    Rizzi, L., Issues in Italian Syntax, Foris, Dordrecht, 1982.Google Scholar
  18. 18.
    Stabler, E. P., ‘Tupled pregroup grammars’, ms. University of California, Los Angeles, 2004.Google Scholar
  19. 19.
    Van Benthem, J., ‘The categorial fine-structure of natural language’, in C. Casadio, P. J. Scott, and R. A. G. Seely (eds.), Language and Grammar, CSLI, Stanford, 2005, pp. 1–29.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Faculty of Psychology, Dept. of PhilosophyUniversity “G. D’Annunzio”Chieti ScaloItaly

Personalised recommendations