Studia Logica

, Volume 87, Issue 2–3, pp 199–224

Parsing Pregroup Grammars and Lambek Calculus Using Partial Composition

Article

Abstract

The paper presents a way to transform pregroup grammars into contextfree grammars using functional composition. The same technique can also be used for the proof-nets of multiplicative cyclic linear logic and for Lambek calculus allowing empty premises.

Keywords

pregroup Lambek calculus linear logic parsing context-free grammars 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrusci Michele, (December 1991). ‘Phase semantics and sequent calculus for pure non-commutative classical linear logic’. Journal of Symbolic Logic 56(4):1403–1451CrossRefGoogle Scholar
  2. 2.
    Béchet Denis, (1998). ‘Minimality of the correctness criterion for multiplicative proof nets’. Mathematical Structures in Computer Science 8:543–558CrossRefGoogle Scholar
  3. 3.
    Béchet, Denis, ‘Incremental parsing of Lambek calculus using proof-net interfaces’, in ACL/SIGPARSE (ed.), Proceedings of the Eigth International Workshop on Parsing Technologies, Nancy, France, April 2003, INRIA, April 2003, pp. 31–42.Google Scholar
  4. 4.
    Buszkowski, Wojciech, ‘Lambek grammars based on pregroups’, in Philippe de Groote, Glyn Morill, and Christian Retoré (eds.), Logical aspects of computational linguistics: 4th International Conference, LACL 2001, Le Croisic, France, June 2001, volume 2099, Springer-Verlag, 2001.Google Scholar
  5. 5.
    Buszkowski, Wojciech, and Katarzyna Moroz, ‘PTIME transformation of pregroup grammar into cfg and pda’, 37th Poznań Linguistic Meeting (PLM), Poznań, 2006.Google Scholar
  6. 6.
    Danos Vincent, Laurent Regnier, (1989). ‘The structure of multiplicatives’. Archive for Mathematical Logic 28:181–203CrossRefGoogle Scholar
  7. 7.
    de Groote, Philippe, ‘A dynamic programming approach to categorial deduction’, Conference on Automated Deduction, CADE‘99, Lecture Notes in Artificial Intelligence, Springer-Verlag, July 1999.Google Scholar
  8. 8.
    Girard Jean-Yves, (1987). ‘Linear logic’. Theoretical Computer Science 50(1):1–102CrossRefGoogle Scholar
  9. 9.
    Lambek Joachim, (1958). ‘The mathematics of sentence structure’. American Mathematical Monthly 65:154–170CrossRefGoogle Scholar
  10. 10.
    Lambek, Joachim, ‘Type grammars revisited’, in Alain Lecomte, François Lamarche and Guy Perrier (eds.), Logical aspects of computational linguistics: Second International Conference, LACL ’97, Nancy, France, September 22–24, 1997; selected papers, volume 1582, Springer-Verlag, 1999.Google Scholar
  11. 11.
    Lambek, Joachim, ‘Mathematics and the mind’, in V.M. Abrusci and C. Casadio (eds.), New Perspectives in Logic and Formal Linguisitics, Proceedings Vth ROMA Workshop, Bulzoni Editore, 2001.Google Scholar
  12. 12.
    Lecomte, Alain, and Christian Retoré, ‘Words as modules and modules as partial proof nets in a lexicalised grammar’, in Michele Abrusci and Claudia Casadio (eds.), Third Roma Workshop: Proofs and Linguistics Categories — Applications of Logic to the analysis and implementation of Natural Language, Bologna:CLUEB, 1996, pp. 187–198.Google Scholar
  13. 13.
    Lecomte, Alain, and Christian Retoré, ‘Words as modules: a lexicalised grammar in the framework of linear logic proof nets’, in Carlos Martin-Vide (ed.), Mathematical and Computational Analysis of Natural Language — selected papers from ICML‘96, volume 45 of Studies in Functional and Structural Linguistics, John Benjamins publishing company, 1998, pp. 129–144.Google Scholar
  14. 14.
    Morrill, Glyn V., ‘Memoisation of categorial proof nets: parallelism in categorial processing’, in Third Roma Workshop: Proofs and Linguistics Categories — Applications of Logic to the analysis and implementation of Natural Language, Bologna:CLUEB, 1996.Google Scholar
  15. 15.
    Pentus, Mati, ‘Lambek grammars are context-free’, in Logic in Computer Science, IEEE Computer Society Press, 1993.Google Scholar
  16. 16.
    Pentus Mati, (1997). ‘Product-free Lambek calculus and context-free grammars’. Journal of Symbolic Logic 62 (2):648–660Google Scholar
  17. 17.
    Roorda, Dirk, Resource logics: Proof-theoretical investigations, Phd thesis, University of Amsterdam, 1991.Google Scholar
  18. 18.
    Yetter David N., (1990). ‘Quantales and (non-commutative) linear logic’. Journal of Symbolic Logic 55:41–64CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.LINA & CNRS FRE 2729Nantes Cedex 03France

Personalised recommendations