Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Temporal Interaction of Information and Belief

  • 64 Accesses

  • 3 Citations


The temporal updating of an agent’s beliefs in response to a flow of information is modeled in a simple modal logic that, for every date t, contains a normal belief operator B t and a non-normal information operator I t which is analogous to the ‘only knowing’ operator discussed in the computer science literature. Soundness and completeness of the logic are proved and the relationship between the proposed logic, the AGM theory of belief revision and the notion of plausibility is discussed.

This is a preview of subscription content, log in to check access.


  1. 1.

    Alchourrón C., Gärdenfors P., Makinson D. (1985). ‘On the logic of theory change: partial meet contraction and revision functions’. The Journal of Symbolic Logic 50: 510–530

  2. 2.

    Battigalli P. (1996). ‘Strategic independence and perfect Bayesian equilibria’. Journal of Economic Theory 70: 201–234

  3. 3.

    Blackburn, P., M. de Rijke and Y. Venema, Modal logic, Cambridge University Press, 2001.

  4. 4.

    Board O. (2004). ‘Dynamic interactive epistemology’. Games and Economic Behavior 49: 49–80

  5. 5.

    Bonanno G. (1993). ‘Rational belief equilibria’. Economic Notes 22: 430–463

  6. 6.

    Bonanno, G., ‘A simple modal logic for belief revision’, Synthese (and Knowledge, Rationality and Action) 147: 193–228, 2005. Reprinted in W. van der Hoek (ed.), Uncertainty, rationality and agency, Springer, 2006, pp. 139–174.

  7. 7.

    Bonanno, G., ‘Belief revision in a branching-time temporal framework’, Working Paper, University of California, Davis, 2006.

  8. 8.

    Chellas, B., Modal logic: an introduction, Cambridge University Press, 1984.

  9. 9.

    Friedman N., Halpern J. (1999). ‘Belief revision: a critique’. Journal of Logic, Language, and Information 8: 401–420

  10. 10.

    Fudenberg D., Tirole J. (1991). ‘Perfect Bayesian equilibrium and sequential equilibrium’. Journal of Economic Theory 53: 236–260

  11. 11.

    Gärdenfors, P., Knowledge in flux: modeling the dynamics of epistemic states, MIT Press, 1988.

  12. 12.

    Goranko V., Passy S. (1992). ‘Using the universal modality: gains and questions’. Journal of Logic and Computation 2: 5–30

  13. 13.

    Grove A. (1988). ‘Two modellings for theory change’. Journal of Philosophical Logic 17: 157–170

  14. 14.

    Hintikka, J., Knowledge and belief, Cornell University Press, 1962.

  15. 15.

    Katsuno, H., and A. O. Mendelzon, ‘On the difference between updating a knowledge and revising it’, in P. Gärdenfors (ed.), Belief Revision, Vol. 29 in Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 1992, pp. 83–203.

  16. 16.

    Kreps, D., and R. Wilson, ‘Sequential equilibria’, Econometrica 50: 863–894.

  17. 17.

    Kripke S. (1963). ‘A semantical analysis of modal logic I: normal propositional calculi’. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 9: 67–96

  18. 18.

    Levesque H.J. (1990). ‘All I know: a study in autoepistemic logic’. Artificial Intelligence 5: 263–309

  19. 19.

    Nayak A., Pagnucco M., Peppas P. (2003). ‘Dynamic belief revision operators’. Artificial Intelligence 146: 193–228

Download references

Author information

Correspondence to Giacomo Bonanno.

Additional information

A first draft of this paper was presented at the Workshop on Belief Change in Rational Agents: Perspectives from Artificial Intelligence, Philosophy and Economics, Dagstuhl (Germany), August 2005.

Special Issue Formal Epistemology II. Edited by Branden Fitelson

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bonanno, G. Temporal Interaction of Information and Belief. Stud Logica 86, 375–401 (2007). https://doi.org/10.1007/s11225-007-9066-5

Download citation


  • iterated belief revision
  • information
  • qualitative Bayes rule
  • plausibility ordering