Studia Logica

, Volume 85, Issue 3, pp 319–332 | Cite as

Kripke Models, Distributive Lattices, and Medvedev Degrees

  • Sebastiaan A. Terwijn


We define a variant of the standard Kripke semantics for intuitionistic logic, motivated by the connection between constructive logic and the Medvedev lattice. We show that while the new semantics is still complete, it gives a simple and direct correspondence between Kripke models and algebraic structures such as factors of the Medvedev lattice.


Kripke semantics Medvedev degrees intuitionistic propositional logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heyting A., Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der Preussisischen Akademie von Wissenschaften, Physikalisch-mathematische Klasse 1930, pp. 42–56.Google Scholar
  2. 2.
    Jankov A.V. ‘Calculus of the weak law of the excluded middle’, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), pp. 1044–1051. (In Russian)Google Scholar
  3. 3.
    Jaśkowski, S., Recherches sur le système de la logique intuitioniste, Actes du Congrès International de Philosophie Scientifique VI, Philosophie des mathèmatiques, Actualitès Scientifiques et Industrielles 393, Paris, Hermann 1936, pp. 58–61.Google Scholar
  4. 4.
    Kleene S.C. (1945) ‘On the interpretation of intuitionistic number theory’. Journal of Symbolic Logic 10: 109–124CrossRefGoogle Scholar
  5. 5.
    Kolmogorov A. (1932) ‘Zur Deutung der intuitionistischen Logik’. Mathematische Zeitschrift 35(1): 58-65CrossRefGoogle Scholar
  6. 6.
    Kripke, S., ‘Semantical analysis of intuitionistic logic’. in Formal systems and recursive functions, J. N. Crossley and M. A. Dummett (eds.), North-Holland 1965, pp. 92–130.Google Scholar
  7. 7.
    Medvedev Y.T. (1955) ‘Degrees of difficulty of the mass problems’. Dokl. Akad. Nauk. SSSR 104(4): 501–504Google Scholar
  8. 8.
    Medvedev Y.T. (1962) ‘Finite problems’. Dokl. Akad. Nauk. SSSR (NS) 142(5): 1015–1018Google Scholar
  9. 9.
    Rose G.F. (1953) ‘Propositional calculus and realizability’. Transactions of the American Mathematical Society 75: 1–19CrossRefGoogle Scholar
  10. 10.
    Skvortsova, E.Z., ‘A faithful interpretation of the intuitionistic propositional calculus by means of an initial segment of the Medvedev lattice’, Sibirsk. Math. Zh. 29(1) (1988), 171–178. (In Russian.)Google Scholar
  11. 11.
    Sorbi A. (1990) ‘Some remarks on the algebraic structure of the Medvedev lattice’. Journal of Symbolic Logic 55(2): 831–853CrossRefGoogle Scholar
  12. 12.
    Sorbi A. (1991) ‘Embedding Brouwer algebras in the Medvedev lattice’. Notre Dame Journal of Formal Logic 32(2): 266–275CrossRefGoogle Scholar
  13. 13.
    . Sorbi, A., ‘The Medvedev lattice of degrees of difficulty’, in S. B. Cooper, T. A. Slaman, and S. S.Wainer (eds.), Computability, Enumerability, Unsolvability: Directions in Recursion Theory, London Mathematical Society Lecture Notes 224, Cambridge University Press, 1996, pp. 289–312.Google Scholar
  14. 14.
    Terwijn S.A. (2006) ‘Constructive logic and the Medvedev lattice’. Notre Dame Journal of Formal Logic 47(1): 73–82CrossRefGoogle Scholar
  15. 15.
    Terwijn S.A. (2006) ‘The Medvedev lattice of computably closed sets’. Archive for Mathematical Logic 45(2): 179–190CrossRefGoogle Scholar
  16. 16.
    Terwijn, S. A., Kripke models, distributive lattices, and Medvedev degrees, in S. B. Cooper, B. Lówe, L. Torenvliet (eds.), New Computational Paradigms, Proceedings of Computability in Europe (CiE 2005), Lecture Notes in Computer Science 3526, Springer, 2005, pp. 486–494.Google Scholar
  17. 17.
    . Troelstra, A. S., and D. van Dalen, Constructivism in Mathematics, Vol. I, Studies in logic and the foundations of mathematics Vol. 121, North-Holland, 1988.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Institute for Discrete Mathematics and GeometryTechnical University of ViennaViennaAustria

Personalised recommendations