Studia Logica

, Volume 84, Issue 1, pp 51–62 | Cite as

Mathematical Fuzzy Logic – What It Can Learn from Mostowski and Rasiowa

  • Petr HájekEmail author


Important works of Mostowski and Rasiowa dealing with many-valued logic are analyzed from the point of view of contemporary mathematical fuzzy logic.


Mostowski Rasiowa many-valued logic fuzzy logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cintula, P., ‘Weakly implicative fuzzy logics’, Archive for Math. Logic, to apepar.Google Scholar
  2. [2]
    Cintula, P., and P. Hájek, ‘Triangular norm based predicate fuzzy logics’, in Proceedings of 26th Linz seminar on fuzzy set theory 2005, to appear.Google Scholar
  3. [3]
    Cintula, P., and M. Navara, ‘ Compactness of Fuzzy Logics’, Fuzzy sets and systems 143 (2003), 59–73.CrossRefGoogle Scholar
  4. [4]
    Esteva, F., and L. Godo, ‘Monoidal t-norm based logic: towards a logic of left continuous t-norms’, Fuzzy sets and systems 123 (2001), 271–288.CrossRefGoogle Scholar
  5. [5]
    Esteva, F., L. Godo, P. Hájek, and F. Montagna, ‘Hoops and Fuzzy Logic’, Journal of Logic and Computation 13 (2003), 532–555.CrossRefGoogle Scholar
  6. [6]
    Gottwald, S., and P. Hájek, ‘Triangular norm based mathematical fuzzy logics’, in E.-P. Klement, R. Mesiar (eds.), Logical, algebraic, analytic and probabilistic aspects of triangular norms. Kluwer 2005, pp. 275–299.Google Scholar
  7. [7]
    Hájek, P., Metamathematics of fuzzy logic, Kluwer 1998.Google Scholar
  8. [8]
    Hájek, P., ‘Arithmetical complexity and fuzzy logic — a survey’. Soft computing 9 (2005), 935–941.CrossRefGoogle Scholar
  9. [9]
    Hájek, P., ‘Observations on non-commutative fuzzy logic’, Soft computing 8 (2003), 38–43.Google Scholar
  10. [10]
    Hájek, P., ‘What is mathematical fuzzy logic’. Fuzzy sets and systems 157 (2006), 597–603.CrossRefGoogle Scholar
  11. [11]
    Montagna, F., Sacchetti, ‘Kripke semantics for many-valued logics’, Mathematical logic quaterly 49 (2003), 629–641.CrossRefGoogle Scholar
  12. [12]
    Mostowski, A., ‘Proofs of non-deducibility in intuitionistic functional calculus’, Journal of Symbolic Logic 13 (1948), 204–207.CrossRefGoogle Scholar
  13. [13]
    Mostowski, A., ‘Axiomatizability of some many-valued predicate calculi’, Fund. Math. 50 (1961), 165–190.Google Scholar
  14. [14]
    Mostowski, A., An example of a non-axiomatizable many-valued logic. Zeitschr. Math. Logik und Grundlagenforschung 7 (1961), 72–76.Google Scholar
  15. [15]
    Mostowski, A., ‘Hilbert epsilon function in many-valued logics’, Proc. Modal and many-valued logics, Helsinki 1962, pp. 169–188.Google Scholar
  16. [16]
    Novák, V., I., Perfilieva, and J. Močkoř, Mathematical principles of fuzzy logic, Kluwer, 2000.Google Scholar
  17. [17]
    Rasiowa, H., An algebraic approach to non-classical logics, PWN -Polish Scientific Publishers and North Holland Publ. Comp., 1974.Google Scholar
  18. [18]
    Rasiowa, H., and R. Sikorski, The mathematics of metamathematics, Państwowe Wydawnictwo Naukowe, Warszawa, 1963.Google Scholar
  19. [19]
    Zadeh, L., ‘Fuzzy sets’, Information and Control 8 (1965), 338–353.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute of Computer Science Academy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations