Studia Logica

, Volume 82, Issue 1, pp 95–119 | Cite as

Towards a Semantic Characterization of Cut-Elimination

  • Agata Ciabattoni
  • Kazushige Terui


We introduce necessary and sufficient conditions for a (single-conclusion) sequent calculus to admit (reductive) cut-elimination. Our conditions are formulated both syntactically and semantically.


sequent calculus cut-elimination nonclassical logicss substructural logics phase semantics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abrusci, V. M., ‘Non-commutative intuitionistic linear Propositional logic’, Zeit-schrift fur Mathematische Logik und Grundlagen der Mathematik 36: 297–318, 1990.Google Scholar
  2. [2]
    Avron, A., and I. Lev, ‘Canonical Propositional Gentzen-Type Systems’, Proceedings of IJCAR'01, vol. 2083 LNCS, 2001, pp. 529–543.Google Scholar
  3. [3]
    Belardinelli, F., H. Ono, and P. Jipsen, ‘Algebraic aspects of cut elimination’, Studia Logica 68: 1–32, 2001.Google Scholar
  4. [4]
    Belnap, N. D., Jr., ‘Display Logic’, Journal of Philosophical Logic, 11(4):375–417, 1982.CrossRefGoogle Scholar
  5. [5]
    Buss, S., ‘An Introduction to Proof Theory’, Handbook of Proof Theory, Elsevier Science, 1998, pp. 1–78.Google Scholar
  6. [6]
    Ciabattoni, A., ‘Automated Generation of Analytic Calculi for Logics with Linearity’, Proceedings of CSL'04, vol. 3210 LNCS, 2004, pp. 503–517.Google Scholar
  7. [7]
    Gentzen, G., ‘Untersuchungenüber das Logische Schliessen’, Math. Zeitschrift 39: 176–210, 405–431, 1935.Google Scholar
  8. [8]
    Girard, J.-Y., ‘Three valued logics and cut-elimination: the actual meaning of Takeuti's conjecture’, Dissertationes Mathematicae 136: 1–49, 1976.Google Scholar
  9. [9]
    Girard, J.-Y., Proof Theory and Logical Complexity, Bibliopolis, 1987.Google Scholar
  10. [10]
    Girard, J.-Y., Y. Lafont, and P. Taylor, Proofs and Types, Cambridge University Press, 1989.Google Scholar
  11. [11]
    Girard, J.-Y., ‘On the meaning of logical rules I: syntax vs. semantics’, in U. Berger and H. Schwichtenberg, (eds.), Computational Logic, Heidelberg Springer-Verlag, 1999, pp. 215–272.Google Scholar
  12. [12]
    Hori, R., H. Ono, and H. Schellinx, ‘Extending intuitionistic linear logic with knotted structural rules’, Notre Dame Journal of Formal Logic 35(2):219–242, 1994.CrossRefGoogle Scholar
  13. [13]
    Miller, D., and E. Pimentel, ‘Using Linear Logic to reason about sequent systems’, Proceedings of Tableaux'02, vol. 2381 LNCS, 2002, pp. 2–23.Google Scholar
  14. [14]
    Okada, M., ‘Phase semantics for higher order completeness, cut-elimination and normalization proofs (extended abstract)’, in J.-Y. Girard, M. Okada, and A. Scedrov, (eds.), ENTCS (Electronic Notes in Theoretical Computer Science) vol.3: A Special Issue on the Linear Logic 96, Tokyo Meeting, Elsevier-ENTCS, 1996.Google Scholar
  15. [15]
    Okada, M., ‘Phase semantic cut-elimination and normalization proofs of first- and higher-order linear logic’, Theoretical Computer Science 227: 333–396, 1999.CrossRefGoogle Scholar
  16. [16]
    Okada, M., ‘A uniform semantic proof for cut-elimination and completeness of various first and higher order logics’, Theoretical Computer Science 281: 471–498, 2002.CrossRefGoogle Scholar
  17. [17]
    Ono, H., ‘Semantics for substructural logics’, in K. Dosen and P. Schroder-Heister, (eds.), Substructural logics, Oxford University Press, 1994, pp. 259–291.Google Scholar
  18. [18]
    Prijatelj, A., ‘Bounded Contraction and Gentzen style Formulation of Lukasiewicz Logics’, Studia Logica 57: 437–456, 1996.CrossRefGoogle Scholar
  19. [19]
    Restall, G., An Introduction to Substructural Logics, Routledge, London, 1999.Google Scholar
  20. [20]
    Schwichtenberg, H., and A. S. Troelstra, Basic Proof Theory (2nd Edition). Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 2000.Google Scholar
  21. [21]
    Terui, K., ‘Which Structural Rules Admit Cut Elimination? — An Algebraic Criterion’, Submitted. Available at Scholar
  22. [22]
    Troelstra, A. S., Lectures on Linear Logic, CSLI Lecture Notes 29, Center for the Study of Language and Information, Stanford, California, 1992.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute für Computersprachen TU WienWienAustria
  2. 2.National Institute of InformaticsTokyoJapan

Personalised recommendations