Advertisement

Studia Logica

, Volume 81, Issue 1, pp 79–98 | Cite as

Comparing Inductive and Circular Definitions: Parameters, Complexity and Games

  • Kai-Uwe Küdhnberger
  • Benedikt Löwe
  • Michael Möllerfeld
  • Philip Welch
Article

Abstract

Gupta-Belnap-style circular definitions use all real numbers as possible starting points of revision sequences. In that sense they are boldface definitions. We discuss lightface versions of circular definitions and boldface versions of inductive definitions.

Keywords

Inductive definitions Revision Theory Circular Definitions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonelli, Gian Aldo, ‘What's in a function?’, Synthese 107 (1996), 167–204.CrossRefGoogle Scholar
  2. Barwise, Jon, Admissible sets and structures, An approach to definability theory, Perspectives in Mathematical Logic, Berlin, 1975.Google Scholar
  3. Burgess, John P., ‘The Truth is Never Simple’, Journal of Symbolic Logic 51 (1986), 663–681.Google Scholar
  4. Cook, Roy T., ‘Patterns of Paradox’, Journal of Symbolic Logic 69 (2004), 767–774.CrossRefGoogle Scholar
  5. Devlin, Keith J., Constructibility, Perspectives in Mathematical Logic Berlin, 1984.Google Scholar
  6. Ebbinghaus, Heinz–Dieter, Jörg Flum, Finite Model Theory, Perspectives in Mathematical Logic Berlin, 1995.Google Scholar
  7. Gaifman, Haim, ‘Operational Pointer Semantics: Solution to Self-referential Puzzles I’, in Moshe Vardi (ed.), Proceedings of the 2nd Conference on Theoretical Aspects of Reasoning about Knowledge, Pacific Grove, CA, March 1988, Morgan Kaufmann, San Francisco, 1988, pp. 43–59.Google Scholar
  8. Gaifman, Haim, ‘Pointers to Truth’, Journal of Philosophy 89 (1992), 223–261.Google Scholar
  9. Gupta, Anil, Nuel Belnap, The Revision Theory of Truth, Cambridge MA, 1993.Google Scholar
  10. Kanamori, Akihiro, The higher infinite, Large cardinals in set theory from their beginnings, Second edition, Springer Monographs in Mathematics, Berlin, 2003.Google Scholar
  11. Kreutzer, Stephan, ‘Partial Fixed-Point Logic on Infinite Structures’, in Julian C. Bradfield (ed.), Computer Science Logic, 16th International Workshop, CSL 2002, 11th Annual Conference of the EACSL, Edinburgh, Scotland, UK, September 22-25, 2002, Proceedings, Lecture Notes in Computer Science 2471, Berlin, 2002, pp. 337–351.Google Scholar
  12. Löwe, Benedikt, ‘Revision sequences and computers with an infinite amount of time’, Journal of Logic and Computation 11 (2001), 25–40; also in Heinrich Wansing (ed.), Essays on Non-Classical Logic, Advances in Logic 1, Singapore, 2001, pp. 37-59.Google Scholar
  13. Löwe, Benedikt, Philip D. Welch, ‘Set-Theoretic Absoluteness and the Revision Theory of Truth’, Studia Logica 68 (2001), 21–41.Google Scholar
  14. Miller, Arnold W., Descriptive Set Theory and Forcing, How to prove theorems about Borel sets the hard way, Lecture Notes in Logic 4, Berlin, 1995.Google Scholar
  15. Moschovakis, Yiannis N., ‘The Game Quantifier’, Proceedings of the American Mathematical Society 31 (1972), 245–250.Google Scholar
  16. Moschovakis, Yiannis N., Elementary Induction on Abstract Structures, Studies in Logic and the Foundations of Mathematics 77, Amsterdam, 1974.Google Scholar
  17. Moschovakis, Yiannis N., Descriptive Set Theory, Studies in Logic and the Foundations of Mathematics 100, Amsterdam, 1980.Google Scholar
  18. Orilia, Francesco, ‘Meaning and Circular Definitions’, Journal of Philosophical Logic 29 (2000), 155–169.Google Scholar
  19. Simpson, Stephen G., ‘Predicativity: the outer limits’, in Wilfried Sieg, Richard Sommer, Carolyn Talcott, (eds.), Reflections on the foundations of mathematics, Essays in honor of Solomon Feferman, Papers from the symposium held at Stanford University, Stanford, CA, December 11–13, 1998, Lecture Notes in Logic 15, Association for Symbolic Logic, Urbana IL, 2002, pp. 130–136.Google Scholar
  20. Tanaka, Kazuyuki, ‘Weak axioms of determinacy and subsystems of analysis II: Σ02 games’, Annals of Pure and Applied Logic 52 (1991), 181–193.CrossRefGoogle Scholar
  21. Welch, Philip D., ‘On Gupta-Belnap Revision Theories of Truth, Kripkean fixed points, and the Next Stable Set’, Bulletin of Symbolic Logic 7 (2001), 345–360.Google Scholar
  22. Welch, Philip D., ‘On Revision Operators’, Journal of Symbolic Logic 68 (2003), 689–711.CrossRefGoogle Scholar
  23. Welch, Philip D., Weak systems of determinacy and arithmetic quasi-inductive definitions, preprint.Google Scholar
  24. Yaqøub, Aladdin M., The Liar Speaks the Truth. A Defense of the Revision Theory of Truth, Oxford, 1993.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Kai-Uwe Küdhnberger
    • 1
  • Benedikt Löwe
    • 2
  • Michael Möllerfeld
    • 3
    • 4
  • Philip Welch
    • 5
  1. 1.Institut für KognitionswissenschaftUniversität Osnabrück, 49069 OsnabrückGermany
  2. 2.Institute for Logic, Language and Computation,Universiteit van AmsterdamAmsterdamThe Netherlands
  3. 3.Institut für mathematische Logik und GrundlagenforschungWestfälische Wilhelms-UniversitätMünsterGermany
  4. 4.Mathematisches Institut,Rheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  5. 5.School of MathematicsUniversity of BristolBristolUnited Kingdom

Personalised recommendations