Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Refined Extension Principle for Semantics of Dynamic Logic Programming

Abstract

Over recent years, various semantics have been proposed for dealing with updates in the setting of logic programs. The availability of different semantics naturally raises the question of which are most adequate to model updates. A systematic approach to face this question is to identify general principles against which such semantics could be evaluated. In this paper we motivate and introduce a new such principle the refined extension principle. Such principle is complied with by the stable model semantics for (single) logic programs. It turns out that none of the existing semantics for logic program updates, even though generalisations of the stable model semantics, comply with this principle. For this reason, we define a refinement of the dynamic stable model semantics for Dynamic Logic Programs that complies with the principle.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    ALFERES, J. J., J. A. LEITE, L. M. PEREIRA, H. PRZYMUSINSKA, and T. C. PRZYMUSINSKI, ‘Dynamic logic programming’, in A. Cohn, L. Schubert, and S. Shapiro, (eds.), Proceedings of the 6th International Conference on Principles of Knowledge Representation and Reasoning (KR-98), Morgan Kaufmann Publishers, 1998, pp. 98–111.

  2. 2.

    ALFERES, J. J., J. A. LEITE, L. M. PEREIRA, H. PRZYMUSINSKA, and T. C. PRZYMUSINSKI, ‘Dynamic updates of non-monotonic knowledge bases’, The Journal of Logic Programming, 45(1–3):43–70, September/October 2000.

  3. 3.

    APT K. R., and R. N. BOL, ‘Logic programming and negation: A survey’, The Journal of Logic Programming, 19 & 20:9–72, May 1994.

  4. 4.

    BUCCAFURRI, F., W. FABER, and N. LEONE, ‘Disjunctive logic programs with inheritance’, in D. De Schreye, (ed.), Proceedings of the 1999 International Conference on Logic Programming (ICLP-99), MIT Press, November 1999, pp. 79–93.

  5. 5.

    EITER, T., M. FINK, G. SABBATINI, and H. TOMPITS, ‘On properties of update sequences based on causal rejection’ Theory and Practice of Logic Programming, 2(6), 2002.

  6. 6.

    VAN GELDER, A., K. A. ROSS, and J. S. SCHLIPF, ‘The well-founded semantics for general logic programs’, Journal of the ACM, 38(3):620–650, 1991.

  7. 7.

    GELFOND, M., and V. LIFSCHITZ, ‘The stable model semantics for logic programming’, in R. Kowalski and K. A. Bowen, (eds.), 5th International Conference on Logic Programming, MIT Press, 1988, pp. 1070–1080.

  8. 8.

    GELFOND, M., and V. LIFSCHITZ, ‘Representing actions and change by logic programs’, Journal of Logic Programming, 17:301–322, 1993.

  9. 9.

    KOWALSKI, R. A., and M. J. SERGOT, ‘A logic-based calculus of events’, New Generation Computing, 4:67–95, 1986.

  10. 10.

    Leite, J. A., Evolving Knowledge Bases, volume 81 of Frontiers in Artificial Intelligence and Applications, IOS Press, 2003.

  11. 11.

    LEITE, J. A., J. J. ALFERES, and L. M. PEREIRA, ‘Multi-dimensional dynamic knowledge representation’, in T. Eiter, M. Truszczynski, and W. Faber, (eds.), Proceedings of the 6th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-01), volume 2173 of LNAI, Springer, 2001, pp. 365–378.

  12. 12.

    LEITE, J. A., and L. M. PEREIRA, ‘Generalizing updates: From models to programs’, in J. Dix, L. M. Pereira, and T. C. Przymusinski, (eds.), Selected Extended Papers of the ILPS'97 3th International Workshop on Logic Programming and Knowledge Representation (LPKR-97), volume 1471 of LNAI, Springer Verlag, 1997, pp. 224–246.

  13. 13.

    LEITE, J. A., and L. M. PEREIRA, ‘Iterated logic program updates’, in J. Ja.ar, (ed.), Proceedings of the 1998 Joint International Conference and Symposium on Logic Programming (JICSLP-98), MIT Press, 1998, pp. 265–278.

  14. 14.

    LEONE, N., G. PFEIFER, W. FABER, F. CALIMERI, T. DELL'ARMI, T. EITER, G. GOTTLOB, G. IANNI, G. IELPA, S. PERRI C. KOCH, and A. POLLERES, ‘The DLV system’, in Procs. of JELIA'02, volume 2424 of LNAI, Springer-Verlag, 2002.

  15. 15.

    LEVESQUE, H., F. PIRRI, and R. REITER, ‘Foundations for the situation calculus’, Linkoping Electronic Articles in Computer and Information Science, 3(18), 1998.

  16. 16.

    LIFSCHITZ, V., and T. WOO, ‘Answer sets in general non-monotonic reasoning (preliminary report)’, in B. Nebel, C. Rich, and W. Swartout, (eds.), Proceedings of the 3th International Conference on Principles of Knowledge Representation and Reasoning (KR-92), Morgan-Kaufmann, 1992.

  17. 17.

    MCCARTHY, J., and P. J. HAYES, ‘Some philosophical problems from the standpoint of artificial intelligence’, in B. Meltzer and D. Michie, (eds.), Machine Intelligence 4, Edinburgh University Press, 1969, pp. 463–502.

  18. 18.

    NIEMELA, I., and P. SIMONS, ‘Smodels: An implementation of the stable model and well-founded semantics for normal LP’, in J. Dix, U. Furbach, and A. Nerode, (eds.), Proceedings of the 4th International Conference on Logic Programing and Nonmonotonic Reasoning (LPNMR-97), volume 1265 of LNAI, Springer, 1997, pp. 420–429.

  19. 19.

    PRZYMUSINSKA, H., and T. PRZYMUSINSKI, ‘Weakly perfect model semantics for logic programs’, in R. A. Kowalski and K. A. Bowen, (eds.), Proceedings of the Fifth International Conference and Symposium on Logic Programming, The MIT Press, 1988, pp. 1106–1120.

  20. 20.

    SAKAMA, C., and K. INOUE, ‘Updating extended logic programs through abduction’, in M. Gelfond, N. Leone, and G. Pfeifer, (eds.), Proceedings of the 5th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-99), volume 1730 of LNAI, Springer, 1999, pp. 147–161.

  21. 21.

    ZHANG, Y., and N. Y. FOO, ‘Updating logic programs’, in H. Prade, (ed.), Proceedings of the 13th European Conference on Artificial Intelligence (ECAI-98), John Wiley & Sons, 1998, pp. 403–407.

Download references

Author information

Correspondence to José Júlio Alferes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alferes, J.J., Banti, F., Brogi, A. et al. The Refined Extension Principle for Semantics of Dynamic Logic Programming. Stud Logica 79, 7–32 (2005). https://doi.org/10.1007/s11225-005-0492-y

Download citation

Keywords

  • Logic Programming
  • Dynamic Logic Programming
  • Updates
  • Belief Change
  • Non-monotonic Reasoning
  • Answer-set Programming
  • Stable Model Semantics