Formation of stable ionized complexes between coinage metal containing superhalogens and moderately reactive molecules: a DFT approach

  • Subhendu Sarkar
  • Tamalika Ash
  • Tanay Debnath
  • Abhijit K. Das
Original Research


The possibility of ionization of six moderately reactive molecules (Y), namely silicon dioxide (SiO2), ammonia (NH3), water (H2O), carbon dioxide (CO2), chloroform (CHCl3) and dichlorodifluoromethane (CCl2F2) by two properly chosen superhalogens (SHs), gold tetrafluoride (AuF4), and gold hexafluoride (AuF6) denoted as AuXn (n = 4 and 6) has been explored at density functional theory (DFT) level. With increasing electron affinity (EA) of superhalogen, its capability to oxidize molecules with higher ionization potential also increases. We have demonstrated that this competition between the electron-binding energy of the superhalogen system and the ionization potential (IP) of the molecule with which the superhalogen combines is a key factor to predict the stability and nature of the formed complex. Binding energies have been evaluated to predict the stability of the formed complexes. The charge flow between Y and AuXn and localization of spin density distribution on the Y molecules have been estimated to verify the nature of interaction between the two. Atom in molecule (AIM) analysis has been performed to predict the nature of the bonds formed between the two interacting species. Overall, our study gives a comprehensive idea about the nature and stability of the complexes formed when moderately reactive (or inert) molecules interact with superhalogens containing coinage metal.


Superhalogen Moderately reactive molecule Geometrical parameter Binding energy DFT 



S.S. is grateful to University Grant Commission (UGC), Government of India, T.A. and T.D. are grateful to Council of Scientific and Industrial Research (CSIR), Government of India, for providing them research fellowships.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Associated content

Table S1 reports the EA and VDE of the superhalogens. Table S2 reports the BE, charge flow, and Mulliken spin density values evaluated at B3LYP level. Figure S1 depicts the optimized structures of the superhalogens. Cartesian coordinates for the optimized structures of the superhalogens, Y molecules, and all the Y-AuFn complexes are provided in the supplementary information.

Supplementary material

11224_2019_1278_MOESM1_ESM.docx (363 kb)
ESM 1 (DOCX 363 kb)


  1. 1.
    Gutsev GL, Boldyrev AI (1981). Chem Phys 56:277–283CrossRefGoogle Scholar
  2. 2.
    Wang XB, Ding CF, Wang LS, Boldyrev AI, Simons J (1999). J Chem Phys 110:4763–4771CrossRefGoogle Scholar
  3. 3.
    Gutsev GL, Boldyrev AI (1981). Chem Phys Lett 84:352–355CrossRefGoogle Scholar
  4. 4.
    Gutsev GL (1992). Chem Phys 166:57–68CrossRefGoogle Scholar
  5. 5.
    King RA, Mastryukov VS, Schaefer III HF (1996). J Chem Phys 105:6880–6886CrossRefGoogle Scholar
  6. 6.
    Marchaj M, Freza S, Skurski P (2012). J Phys Chem A 116:1966–1973CrossRefGoogle Scholar
  7. 7.
    Smuczyńska S, Skurski P (2007). Chem Phys Lett 443:190–193CrossRefGoogle Scholar
  8. 8.
    Freza S, Skurski P (2010). Chem Phys Lett 487:19–23CrossRefGoogle Scholar
  9. 9.
    Smuczyńska S, Skurski P (2009). Inorg Chem 48:10231–10238CrossRefGoogle Scholar
  10. 10.
    Anusiewicz I (2009). J Phys Chem A 113:6511–6516CrossRefGoogle Scholar
  11. 11.
    Anusiewicz I (2009). J Phys Chem A 113:11429–11434CrossRefGoogle Scholar
  12. 12.
    Sikorska C, Freza S, Skurski P (2011). J Phys Chem A 115:2077–2085CrossRefGoogle Scholar
  13. 13.
    Paduani C, Wu MM, Willis M, Jena P (2011). J Phys Chem A 115:10237–10243CrossRefGoogle Scholar
  14. 14.
    Willis M, Götz M, Kandalam AK, Ganteför GF, Jena P (2010). Angew Chem Int Ed 49:8966–8970CrossRefGoogle Scholar
  15. 15.
    Paduani C, Jena P (2012). J Phys Chem A 116:1469–1474CrossRefGoogle Scholar
  16. 16.
    Paduani C, Jena P (2013). Chem Phys Lett 556:173–177CrossRefGoogle Scholar
  17. 17.
    Alexandrova AN, Boldyrev AI, Fu YJ, Yang X, Wang XB, Wang LS (2004). J Chem Phys 121:5709–5719CrossRefGoogle Scholar
  18. 18.
    Sobczyk M, Sawicka A, Skurski P (2003). Eur J Inorg Chem 2003:3790–3797CrossRefGoogle Scholar
  19. 19.
    Sikorska C, Skurski P (2012). Chem Phys Lett 536:34–38CrossRefGoogle Scholar
  20. 20.
    Anusiewicz I (2008). Aust J Chem 61:712–717CrossRefGoogle Scholar
  21. 21.
    Wu MM, Wang H, Ko YJ, Wang Q, Sun Q, Kiran B, Kandalam AK, Bowen KH, Jena P (2011). Angew Chem Int Ed 50:2568–2572CrossRefGoogle Scholar
  22. 22.
    Yin B, Li J, Bai H, Wen Z, Jiang Z, Huang Y (2012). Phys Chem Chem Phys 14:1121–1130CrossRefGoogle Scholar
  23. 23.
    Li Y, Zhang S, Wang Q, Jena P (2013). J Chem Phys 138:054309CrossRefGoogle Scholar
  24. 24.
    Yu Y, Li C, Yin B, Li JL, Huang YH, Wen ZY, Jing ZY (2013). J Chem Phys 139:054305CrossRefGoogle Scholar
  25. 25.
    Wileńska D, Skurski P, Anusiewicz I (2014). J Fluor Chem 168:99–104CrossRefGoogle Scholar
  26. 26.
    Marchaj M, Freza S, Rybacka O, Skurski P (2013). Chem Phys Lett 574:13–17CrossRefGoogle Scholar
  27. 27.
    Czapla M, Freza S, Skurski P (2015). Chem Phys Lett 619:32–35CrossRefGoogle Scholar
  28. 28.
    Koirala P, Willis M, Kiran B, Kandalam AK, Jena P (2010). J Phys Chem C 114:16018–16024CrossRefGoogle Scholar
  29. 29.
    Sikorska C, Skurski P (2011). Inorg Chem 50:6384–6391CrossRefGoogle Scholar
  30. 30.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams F, Ding F, Lipparini F, Egidi J, Goings B, Peng A, Petrone T, Henderson D, Ranasinghe VG, Zakrzewski J, Gao N, Rega G, Zheng W, Liang M, Hada M, Ehara K, Toyota R, Fukuda J, Hasegawa M, Ishida T, Nakajima Y, Honda O, Kitao H, Nakai T, Vreven K, Throssell JA, Montgomery Jr JE, Peralta F, Ogliaro MJ, Bearpark JJ, Heyd EN, Brothers KN, Kudin VN, Staroverov TA, Keith R, Kobayashi J, Normand K, Raghavachari AP, Rendell JC, Burant SS, Iyengar J, Tomasi M, Cossi JM, Millam M, Klene C, Adamo R, Cammi JW, Ochterski RL, Martin K, Morokuma O, Farkas JB, Foresman DJF (2008) Wallingford, CT, 2016. [31] Y. Zhao, D.G. Truhlar. Theor Chem Accounts 120:215–241CrossRefGoogle Scholar
  31. 31.
    Becke AD (1993). J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  32. 32.
    Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785–789CrossRefGoogle Scholar
  33. 33.
    R.F.W. Bader, Oxford Univ. Press: Oxford, 1990Google Scholar
  34. 34.
    T.A. Keith, TK gristmill software, Overland Park KS, USA, 2017Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Subhendu Sarkar
    • 1
  • Tamalika Ash
    • 1
  • Tanay Debnath
    • 1
  • Abhijit K. Das
    • 1
  1. 1.School of Mathematical and Computational Sciences, Indian Association for the Cultivation of ScienceKolkataIndia

Personalised recommendations