Advertisement

The first-principle studies of the elastic, electronic, and vibrational properties of L-alanine

  • Tigran L. PrazyanEmail author
  • Yurii N. Zhuravlev
Original Research
  • 25 Downloads

Abstract

The calculation in the present work is conducted with the help of CRYSTAL’17 package using PBE method, including gradient approximation and taking into account van der Waals forces as well as the B3LYP hybrid functional. Crystal structure and chemical bond, elastic properties, equation of state, structural properties under pressure, and vibrational properties are studied. The elastic constants of single crystal and polycrystalline properties are obtained; anisotropic nature of the crystal is determined. The impact of hydrostatic compression up to pressure of 7.5 GPa on the L-alanine properties is studied. The effect of taking into account the forces of intermolecular interaction on the accuracy of calculation of lattice constants and intermolecular distances is shown. The atom charges and bond overlap population in molecules are determined within the framework of the Mulliken scheme. The total and partial density of states is calculated and it is established that the transition from valence band to conduction band is performed by electrons from oxygen atoms to carbon atoms of the –COO group. The average value of the tensor component of the polarizability, permittivity, and piezoelectric stress coefficients were 40.67 Å3, 2.08, and − 4.25 pm/V, relatively. The obtained dependence of the lattice constants demonstrated occurrence of intersection within pressure interval of about 1.8 GPa, the fact that has earlier been established experimentally. It has been shown that C–C and C–N intramolecular distances reduce with pressure increase, as for the –COO group, C1–O1 distances decrease, while C1–O2 distances increase. The mode Grüneisen parameters, obtained from ab initio calculations for the first time, revealed the increase in the vibration frequency of the –NH3 group, while other vibration frequencies decrease with increasing pressure.

Keywords

L-alanine DFT Elastic properties EOS Vibrational properties 

Notes

Funding information

This study received financial assistance from the Ministry of Education and Science of the Russian Federation in accordance with the state research task (project no. 15.3487.2017/PP).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Jeffery GA (1997) An introduction to hydrogen bonding. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Bisker-Leib V, Doherty MF (2001) Modeling the crystal shape of polar organic materials: prediction of urea crystals grown from polar and nonpolar solvents. Cryst Growth Des.  https://doi.org/10.1021/cg010014w
  3. 3.
    Marder SR, Kippelen B, Jen AK-Y, Peyghambarian N (1997) Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature.  https://doi.org/10.1038/42190
  4. 4.
    Penn BG, Cardelino BH, Moore CE, Shields AW, Frazier D (1991) Growth of bulk single crystals of organic materials for nonlinear optical devices: an overview. Prog Cryst Growth Charact Mater.  https://doi.org/10.1016/0960-8974(91)90024-7
  5. 5.
    Badan J, Hierle R, Perigaud A, Zyss J (1993) NLO properties of organic molecules and polymeric materials. American Chemical Society Symposium Series. American Chemical Society, Washington, DCGoogle Scholar
  6. 6.
    Shkir M, Muhammad S, AlFaify S (2015) Experimental and density functional theory (DFT): a dual approach to study the various important properties of monohydrated l-proline cadmium chloride for nonlinear optical applications. Spectrochim Acta A Mol Biomol Spectrosc.  https://doi.org/10.1016/j.saa.2015.02.023
  7. 7.
    Badan J, Hierle R, Perigaud A, Zyss J (1983) Nonlinear organic crystals: theoretical concepts, materials, and optical properties. Nonlinear Opt Prop Org Polym Mater.  https://doi.org/10.1021/bk-1983-0233.ch004
  8. 8.
    Destro R, Marsh RE, Bianchi R (1988) A low-temperature (23 K) study of L-alanine. J Phys Chem.  https://doi.org/10.1021/j100315a022
  9. 9.
    Tsuboi C, Aburaya K, Kimura F, Maeyama M, Kimura T (2016) Single-crystal structure determination from microcrystalline powders (∼5 μm) by an orientation attachment mountable on an in-house X-ray diffractometer. Cryst Eng Comm.  https://doi.org/10.1039/C5CE02307F
  10. 10.
    Zhu W, Wang R, Shu G, Wu P, Xiao H (2012) First-principles study of the structure, mechanical properties, and phase stability of crystalline zirconia under high pressure. Struct Chem.  https://doi.org/10.1007/s11224-011-9903-z
  11. 11.
    Wu Q, Zhu W, Xiao H (2015) Dispersion-corrected DFT study on the structure and absorption properties of crystalline 5-nitro-2,4-dihydro-1,2,4-triazole-3-one under compression. Struct Chem.  https://doi.org/10.1007/s11224-014-0506-3
  12. 12.
    Badhani B, Kakkar R (2018) Structural, electronic, and reactivity parameters of some triorganotin(IV) carboxylates: a DFT analysis. Struct Chem.  https://doi.org/10.1007/s11224-017-1068-y
  13. 13.
    Khorram R, Raissi H, Shahabi M (2018) Analysis of the structures, energetics, and vibrational frequencies for the hydrogen-bonded interaction of nucleic acid bases with Carmustine pharmaceutical agent: a detailed computational approach. Struct Chem.  https://doi.org/10.1007/s11224-018-1102-8
  14. 14.
    Tulip PR, Clark SJ (2005) Structural and electronic properties of L-amino acids. Phys Rev.  https://doi.org/10.1103/PhysRevB.71.195117
  15. 15.
    Ahmad S, Vaiziey H, Aliabadz HAR, Ahmad R, Khan I, Alix Z, Jalali-Asadabadi S, Ahmadx I, Khanx AA (2016) First-principles studies of pure and fluorine substituted alanines. Int J Modern Phys.  https://doi.org/10.1142/S021797921650079X
  16. 16.
    Tayade NT, Shende AT, Tirpude MP (2018) DFT study of L-alanine’s crystal, molecule and three linear molecules for optoelectronic behavior. Int J Sci Res Phys Appl Sci.  https://doi.org/10.26438/ijsrpas/v6i4.2327
  17. 17.
    Tulip PR, Clark SJ (2006) Lattice dynamical and dielectric properties of L-amino acids. Phys Rev.  https://doi.org/10.1103/PhysRevB.74.064301
  18. 18.
    Wilson CC, Myles D, Ghosh M, Johnsone LN, Wang W (2005) Neutron diffraction investigations of L- and D-alanine at different temperatures: the search for structural evidence for parity violation. New J Chem.  https://doi.org/10.1039/B419295H
  19. 19.
    Lin Ch-Ch (2013) Elasticity of calcite: thermal evolution. Phys Chem Minerals  https://doi.org/10.1007/s00269-012-0555-3
  20. 20.
    Mohamed RM, Mishra MK, AL-Harbi LM, Al-Ghamdi MS, Asiri AM, Reddy CM, Ramamurty U (2015) Temperature dependence of mechanical properties in molecular crystals. Cryst Growth Des.  https://doi.org/10.1021/acs.cgd.5b00245
  21. 21.
    Tylczyński Z, Sterczyńska A, Wiesner M (2011) Temperature dependences of piezoelectric, elastic and dielectric constants of L-alanine crystal. J Phys Condens Matter.  https://doi.org/10.1088/0953-8984/23/35/355901
  22. 22.
    Mao H-K, Chen X-J, Ding Y, Li B, Wang L (2018) Solids, liquids, and gases under high pressure. Review of Modern Physics.  https://doi.org/10.1103/RevModPhys.90.015007
  23. 23.
    Peng Q, Wang G, Liu G-R, De S (2014) Structures, mechanical properties, equations of state, and electronic properties of b-HMX under hydrostatic pressures: a DFT-D2 study. Phys Chem Chem Phys.  https://doi.org/10.1039/C4CP02193B
  24. 24.
    Olsen JS, Gerward L, Freire PTC, Filho JM, Melo FEA, Filho AGS (2008) Pressure-induced phase transformations in L-alanine crystals. J Phys Chem Solids.  https://doi.org/10.1016/j.jpcs.2007.12.005
  25. 25.
    Funnell NP, Dawson A, Francis D, Lennie AR, Marshall WG, Moggach SA, Warrenc JE, Parsons S (2010) The effect of pressure on the crystal structure of L-alanine. Cryst Eng Com.  https://doi.org/10.1039/C001296C
  26. 26.
    Tumanov NA, Boldyreva EV, Kolesov BA, Kurnosova AV, Cabrerad RQ (2010) Pressure-induced phase transitions in L-alanine, revisited. Acta Cryst.  https://doi.org/10.1107/S010876811001983X
  27. 27.
    Ramaniah LM, Kamal C, Sikka SK (2013) First principles DFT study of weak C-H…O bonds in crystalline amino acids under pressure-alanine. AIP Conf Proc.  https://doi.org/10.1063/1.4790935
  28. 28.
    Zhang F, Wang H-W, Tominaga K, Hayashi M (2015) Intramolecular vibrations in low-frequency normal modes of amino acids: L-alanine in neat solid state. J Phys Chem A.  https://doi.org/10.1021/jp512164y
  29. 29.
    Kolesov BA, Boldyreva EV (2013) An interpretation of the “Anomalous” changes in the low-wavenumber range of the Raman spectra of l-alanine crystals. Chem Phys Chem.  https://doi.org/10.1002/cphc.201300294
  30. 30.
    Kolesov BA, Boldyreva EV (2011) Micro-conformational transitions in L-alanine single crystals revisited by low wavenumber Raman spectroscopy. J Raman Spectrosc.  https://doi.org/10.1002/jrs.2768
  31. 31.
    Kolesov BA, Boldyreva EV (2010) Self-trapped N–H vibrational states in the polymorphs of glycine. L- and DL-alanine J Raman Spectrosc 2010(41):670–677.  https://doi.org/10.1002/jrs.2490 CrossRefGoogle Scholar
  32. 32.
    Cavaignac ALO, Lima RJC, Façanha Filho PF, Moreno AJD, Freire PTC (2016) High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition. Physica B.  https://doi.org/10.1016/j.physb.2015.12.044
  33. 33.
    Freire PTC, Melo FEA, Filho JM, Lima RJC, Teixeira AMR (2007) The behavior of NH3 torsional vibration of L-alanine, L-threonine and taurine crystals under high pressure: a Raman spectroscopic study. Vib Spectrosc.  https://doi.org/10.1016/j.vibspec.2007.05.003
  34. 34.
    Minkov VS, Chesalov YA, Boldyreva EV (2010) A study of the temperature effect on the IR spectra of crystalline amino acids, dipeptids, and polyamino acids. VI. L-alanine and DL-alanine. J Struct Chem.  https://doi.org/10.1007/s10947-010-0162-4
  35. 35.
    Shkir M, Yahia IS, Al-Qahtani AMA, Ganesh V, AlFaify S (2017) Investigation on physical properties of L-alanine: an effect of methylene blue dye. J Mol Struct.  https://doi.org/10.1016/j.molstruc.2016.11.007
  36. 36.
    Dovesi R, Erba A, Orlando R, Zicovich-Wilson CM, Civalleri B, Maschio L, Rérat M, Casassa S, Baima J, Salustro S, Kirtman B (2018) Quantum-mechanical condensed matter simulations with CRYSTAL. WIREs Comput Mol Sci.  https://doi.org/10.1002/wcms.1360
  37. 37.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett.  https://doi.org/10.1103/PhysRevLett.77.3865
  38. 38.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys.  https://doi.org/10.1063/1.464913
  39. 39.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys.  https://doi.org/10.1063/1.3382344
  40. 40.
    Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem.  https://doi.org/10.1002/jcc.21759
  41. 41.
    Gatti C, Saunders VR, Roetti C (1994) Crystal-field effects on the topological properties of the electron-density in molecular-crystals - the case of urea. J Chem Phys.  https://doi.org/10.1063/1.467882
  42. 42.
    Valenzano L, Torres FJ, Doll K, Pascale F, Zicovich-Wilson CM, Dovesi R (2006) Ab initio study of the vibrational spectrum and related properties of crystalline compounds; the case of CaCO3 calcite. J Phys Chem.  https://doi.org/10.1524/zpch.2006.220.7.893
  43. 43.
    Broyden CG (1970) The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA J Appl Math.  https://doi.org/10.1093/imamat/6.1.76
  44. 44.
    Ferrero M, Rérat M, Orlando R, Dovesi R (2007) Computation in modern science and engineering. AIP, Melville, NY 2BGoogle Scholar
  45. 45.
    Erba A, El-Kelany KE, Ferrero M, Baraille I, Rerat M (2013) Piezoelectricity of SrTiO3: an ab initio description. Phys Rev.  https://doi.org/10.1103/PhysRevB.88.035102
  46. 46.
    Erba A, Mahmoud A, Belmonte D, Dovesi R (2014) High pressure elastic properties of minerals from ab initio simulations: the case of pyrope, grossular and andradite silicate garnets. J Chem Phys.  https://doi.org/10.1063/1.4869144
  47. 47.
    Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci U S A.  https://doi.org/10.1073/pnas.30.9.244
  48. 48.
    Pascale F, Zicovich-Wilson CM, Lopez F, Civalleri B, Orlando R, Dovesi R (2004) The calculation of the vibration frequencies of crystalline compounds and its implementation in the CRYSTAL code. J Comput Chem.  https://doi.org/10.1002/jcc.20019
  49. 49.
    Zicovich-Wilson CM, Pascale F, Roetti C, Saunders VR, Orlando R, Dovesi R (2004) Calculation of the vibration frequencies of alpha-quartz: the effect of Hamiltonian and basis set. J Comput Chem.  https://doi.org/10.1002/jcc.20120
  50. 50.
    Mouhat F, Coudert FX (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev.  https://doi.org/10.1103/PhysRevB.90.224104
  51. 51.
    Ravindran P, Fast L, Korzhavyi PA, Johansson B, Wills J, Eriksson O (1998) Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J Appl Phys.  https://doi.org/10.1063/1.368733
  52. 52.
    Voigt W (1928) Lehrbuch der Kristallphysik. B. G. Teubner, LeipzigGoogle Scholar
  53. 53.
    Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM - Zeitschrift Für Angewandte Mathematik Und Mechanik.  https://doi.org/10.1002/zamm.19290090104
  54. 54.
    Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc.  https://doi.org/10.1088/0370-1298/65/5/307
  55. 55.
    Tian Y, Xu B, Zhao Z (2012) Microscopic theory of hardness and design of novel superhard crystals. Int J Refract Metal Hard Mater.  https://doi.org/10.1016/j.ijrmhm.2012.02.021
  56. 56.
    Ranganathan SI, Ostoja-Starzewski M (2008) Universal elastic anisotropy index. Phys Rev Lett.  https://doi.org/10.1103/PhysRevLett.101.055504
  57. 57.
    Clarke DR (2003) Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Technol.  https://doi.org/10.1016/S0257-8972(02)00593-5
  58. 58.
    Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev.  https://doi.org/10.1103/PhysRev.71.809
  59. 59.
    De La Pierre M, Pouchan C (2018) Ab initio periodic modelling of the vibrational spectra of molecular crystals: the case of uracil. Theor Chem Accounts.  https://doi.org/10.1007/s00214-017-2191-y

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kemerovo State UniversityKemerovoRussian Federation

Personalised recommendations