Advertisement

Heterospin magnetically active bimetallic Fe and Co complexes of aldiminato-functionalized catechol: a DFT study

  • Andrey G. Starikov
  • Maxim G. Chegerev
  • Alyona A. StarikovaEmail author
Original Research
  • 33 Downloads

Abstract

Density functional theory calculations (UTPSSh/6-311++G(d,p)) of electronic structure, energy characteristics, and magnetic properties of the electromeric forms of homo- and heterometallic binuclear complexes based on a redox-active aldiminato-functionalized catechol were performed. By means of completion of the coordination sphere of the metal ions (Fe and Co) by pyridine molecules in the aldiminate moiety and N,N'-di-tert-butyl-2,11-diaza[3.3]-(2,6)pyridinophane in the dioxolene fragment, the new heterospin magnetically active systems have been revealed. The studied compounds are shown to be capable of undergoing thermally initiated stepwise or synchronized spin-crossover transitions, in particular involving all the electromeric forms. The expected spin-state switching rearrangements allow one to consider the binuclear complexes with aldiminato-functionalized catechol as building blocks for molecular and quantum electronics devices.

Keywords

Density functional theory Magnetic properties Spin-crossover Iron Cobalt Redox-active ligands 

Notes

Funding information

This work has been performed in the framework of State Assignment of the Ministry of Science and Higher Education of the Russian Federation (Project No. 4.1774.2017/4.6).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1463_MOESM1_ESM.pdf (1.3 mb)
ESM 1 (PDF 1336 kb)

References

  1. 1.
    Kahn O, Kröber J, Jay C (1992) Spin transition molecular materials for displays and data recording. Adv Mater 4:718–728.  https://doi.org/10.1002/adma.19920041103 CrossRefGoogle Scholar
  2. 2.
    Kahn O, Martinez CJ (1998) Spin-transition polymers: from molecular materials toward memory devices. Science 279:44–48.  https://doi.org/10.1126/science.279.5347.44 CrossRefGoogle Scholar
  3. 3.
    Canary JW, Mortezaei S, Liang J (2010) Transition metal-based chiroptical switches for nanoscale electronics and sensors. Coord Chem Rev 254:2249–2266.  https://doi.org/10.1016/j.ccr.2010.03.004 CrossRefGoogle Scholar
  4. 4.
    Dei A, Gatteschi D (2011) Molecular (nano) magnets as test grounds of quantum mechanics. Angew Chem Int Ed 50:11852–11858.  https://doi.org/10.1002/anie.201100818 CrossRefGoogle Scholar
  5. 5.
    Venkataramani S, Jana U, Dommaschk M, Sönnichsen FD, Tuczek F, Herges R (2011) Magnetic bistability of molecules in homogeneous solution at room temperature. Science 331:445–448.  https://doi.org/10.1126/science.1201180 CrossRefPubMedGoogle Scholar
  6. 6.
    Timco GA, Faust TB, Tuna F, Winpenny REP (2011) Linking heterometallic rings for quantum information processing and amusement. Chem Soc Rev 40:3067–3075.  https://doi.org/10.1039/C0CS00151A CrossRefPubMedGoogle Scholar
  7. 7.
    Linares J, Codjovi E, Garcia Y (2012) Pressure and temperature spin crossover sensors with optical detection. Sensors 12:4479–4492.  https://doi.org/10.3390/s120404479 CrossRefPubMedGoogle Scholar
  8. 8.
    Calzolari A, Chen Y, Lewis GF, Dougherty DB, Shultz D, Buongiorno Nardelli M (2012) Complex materials for molecular spintronics applications: cobalt bis(dioxolene) valence tautomers, from molecules to polymers. J Phys Chem B 116:13141–13148.  https://doi.org/10.1021/jp3099895 CrossRefPubMedGoogle Scholar
  9. 9.
    Aromi G, Aguila D, Gamez P, Luis F, Roubeau O (2012) Design of magnetic coordination complexes for quantum computing. Chem Soc Rev 41:537–546.  https://doi.org/10.1039/c1cs15115k CrossRefPubMedGoogle Scholar
  10. 10.
    Demir S, Jeon I-R, Long JR, Harris TD (2015) Radical ligand-containing single-molecule magnets. Coord Chem Rev 289–290:149–176.  https://doi.org/10.1016/j.ccr.2014.10.012 CrossRefGoogle Scholar
  11. 11.
    Sato O (2016) Dynamic molecular crystals with switchable physical properties. Nat Chem 8:644–656.  https://doi.org/10.1038/nchem.2547 CrossRefPubMedGoogle Scholar
  12. 12.
    Aromi G, Gamez P, Roubeau O (2016) In: Swart M, Costas M (eds) Spin states in biochemistry and inorganic chemistry: influence on structure and reactivity, John Wiley & Sons, 263–296Google Scholar
  13. 13.
    Senthil Kumar K, Ruben M (2017) Emerging trends in spin crossover (SCO) based functional materials and devices. Coord Chem Rev 346:176–205.  https://doi.org/10.1016/j.ccr.2017.03.024 CrossRefGoogle Scholar
  14. 14.
    Liu H, Li X, Shi C, Wang D, Chen L, He Y, Zhao J (2018) First-principles prediction of two-dimensional metal bis(dithiolene) complexes as promising gas sensors. Phys Chem Chem Phys 20:16939–16948.  https://doi.org/10.1039/c8cp00900g CrossRefPubMedGoogle Scholar
  15. 15.
    Jørgensen CK (1966) Differences between the four halide ligands, and discussion remarks on trigonal-bipyramidal complexes, on oxidation states, and on diagonal elements of one-electron energy. Coord Chem Rev 1:164–178.  https://doi.org/10.1016/S0010-8545(00)80170-8 CrossRefGoogle Scholar
  16. 16.
    Halcrow MA (2013) Spin-crossover materials: properties and applications. Wiley, Chichester, p 564CrossRefGoogle Scholar
  17. 17.
    Tezgerevska T, Alley KG, Boskovic C (2014) Valence tautomerism in metal complexes: stimulated and reversible intramolecular electron transfer between metal centers and organic ligands. Coord Chem Rev 268:23–40.  https://doi.org/10.1016/j.ccr.2014.01.014 CrossRefGoogle Scholar
  18. 18.
    Hauser A (1991) Intersystem crossing in Fe(II) coordination compounds. Coord Chem Rev 111:275–290.  https://doi.org/10.1016/0010-8545(91)84034-3 CrossRefGoogle Scholar
  19. 19.
    Hauser A, Enachescu C, Daku ML, Vargas A, Amstutz N (2006) Low-temperature lifetimes of metastable high-spin states in spin-crossover and in low-spin iron(II) compounds: the rule and exceptions to the rule. Coord Chem Rev 250:1642–1652.  https://doi.org/10.1016/j.ccr.2005.12.006 CrossRefGoogle Scholar
  20. 20.
    Bousseksou A, Molnár G, Real JA, Tanaka K (2007) Spin crossover and photomagnetism in dinuclear iron(II) compounds. Coord Chem Rev 251:1822–1833.  https://doi.org/10.1016/j.ccr.2007.02.023 CrossRefGoogle Scholar
  21. 21.
    Halcrow MA (2007) The spin-states and spin-transitions of mononuclear iron(II) complexes of nitrogen-donor ligands. Polyhedron 26:3523–3576.  https://doi.org/10.1016/j.poly.2007.03.033 CrossRefGoogle Scholar
  22. 22.
    Harding DJ, Harding P, Phonsri W (2016) Spin crossover in iron(III) complexes. Coord Chem Rev 313:38–61.  https://doi.org/10.1016/j.ccr.2016.01.006 CrossRefGoogle Scholar
  23. 23.
    Murray KS, Sheahan RM (1976) Paramagnetic anisotropy and electronic structure of [NN′-ethylenebis-(salicylideneiminato)]cobalt(II), its pyridine adduct, and [NN′-ethylene-bis(thiosalicylideneiminato)]cobalt(II). J Chem Soc Dalton Trans:999–1005.  https://doi.org/10.1039/DT9760000999
  24. 24.
    Kennedy BJ, Fallon GD, Gatehouse BMKC, Murray KS (1984) Spin-state differences and spin crossover in five-coordinate Lewis base adducts of cobalt(II) Schiff base complexes. Structure of the high-spin (N,N'-o-phenylenebis(salicylaldiminato))cobalt(II)-2-methylimidazole adduct. Inorg Chem 23:580–588.  https://doi.org/10.1021/ic00173a019 CrossRefGoogle Scholar
  25. 25.
    Koenig E, Ritter G, Dengler J, Thuery P, Zarembowitch J (1989) X-ray powder diffraction at the spin-state transition in N,N'-ethylenebis(3-carboxysalicylaldiminato)cobalt(II) complexes. Inorg Chem 28:1757–1759.  https://doi.org/10.1021/ic00308a032 CrossRefGoogle Scholar
  26. 26.
    Min KS, Arthur J, Shum WW, Bharathy M, zur Loye H-C, Miller JS (2009) Tristability arising from singlet-triplet and quartet spin states for dimeric Co(II)salen. Inorg Chem 48:4593–4594.  https://doi.org/10.1021/ic900436e CrossRefPubMedGoogle Scholar
  27. 27.
    Krivokapic I, Zerara M, Daku ML, Vargas A, Enachescu C, Ambrus C, Tregenna-Piggott P, Amstutz N, Krausz E, Hauser A (2007) Spin-crossover in cobalt(II) imine complexes. Coord Chem Rev 251:364–378.  https://doi.org/10.1016/j.ccr.2006.05.006 CrossRefGoogle Scholar
  28. 28.
    Voloshin YZ, Varzatskii OA, Novikov VV, Strizhakova NG, Vorontsov II, Vologzhanina AV, Lyssenko KA, Romanenko GV, Fedin MV, Ovcharenko VI, Bubnov YN (2010) Tris-dioximate cobalt(I,II,III) clathrochelates: stabilization of different oxidation and spin states of an encapsulated metal ion by ribbed functionalization. Eur J Inorg Chem 5401–5415.  https://doi.org/10.1002/ejic.201000444 CrossRefGoogle Scholar
  29. 29.
    Vologzhanina AV, Belov AS, Novikov VV, Dolganov AV, Romanenko GV, Ovcharenko VI, Korlyukov AA, Buzin MI, Voloshin YZ (2015) Synthesis and temperature-induced structural phase and spin transitions in hexadecylboron-capped cobalt(ii) hexachloroclathrochelate and its diamagnetic iron(II)-encapsulating analogue. Inorg Chem 54:5827–5838.  https://doi.org/10.1021/acs.inorgchem.5b00546 CrossRefPubMedGoogle Scholar
  30. 30.
    Buchanan RM, Pierpont CG (1980) Tautomeric catecholatesemiquinone interconversion via metal-ligand electron transfer. Structural, spectral, and magnetic properties of (3,5-di-tertbutylcatecholato)(3,5-di-tert-butylsemiquinone)(bipyridyl)cobalt(III), a complex containing mixed-valence organic ligands. J Am Chem Soc 102:4951–4957.  https://doi.org/10.1021/ja00535a021 CrossRefGoogle Scholar
  31. 31.
    Bencinia A, Caneschia A, Carbonera C, Dei A, Gatteschi D, Righini R, Sangregorio C, Van Slageren J (2003) Tuning the physical properties of a metal complex by molecular techniques: the design and the synthesis of the simplest cobalt-o-dioxolene complex undergoing valence tautomerism. J Mol Struct 656:141–154.  https://doi.org/10.1016/S0022-2860(03)00366-1 CrossRefGoogle Scholar
  32. 32.
    Evangelio E, Ruiz-Molina D (2005) Valence tautomerism: new challenges for electroactive ligands. Eur J Inorg Chem:2957–2971.  https://doi.org/10.1002/ejic.200500323 CrossRefGoogle Scholar
  33. 33.
    Gransbury GK, Boulon M-E, Petrie S, Gable RW, Mulder RJ, Sorace L, Stranger R, Boskovic C (2019) DFT prediction and experimental investigation of valence tautomerism in cobalt-dioxolene complexes. Inorg Chem 58:4230–4243.  https://doi.org/10.1021/acs.inorgchem.8b03291 CrossRefPubMedGoogle Scholar
  34. 34.
    Graf M, Wolmershäuser G, Kelm H, Demeschko S, Meyer F, Krüger H-J (2010) Temperature-induced spin-transition in a low-spin cobalt(II) semiquinonate complex. Angew Chem Int Ed 49:950–953.  https://doi.org/10.1002/anie.200903789 CrossRefGoogle Scholar
  35. 35.
    Rupp F, Chevalier K, Graf M, Schmitz M, Kelm H, Gren A, Zimmer M, Gerhards M, van Wellen C, Kruger H-J, Diller R (2017) Spectroscopic, structural, and kinetic investigation of the ultrafast spin crossover in an unusual cobalt(II) semiquinonate radical complex. Chem Eur J 23:2119–2132.  https://doi.org/10.1002/chem.201604546 CrossRefPubMedGoogle Scholar
  36. 36.
    Tezgerevska T, Rousset E, Gable RW, Jameson GNL, Carolina Sañudo E, Starikova A, Boskovic C (2019) Valence tautomerism and spin crossover in pyridinophane-cobalt-dioxolene complexes: an experimental and computational study. Dalton Trans 48:11674–11689.  https://doi.org/10.1039/C9DT02372K CrossRefPubMedGoogle Scholar
  37. 37.
    Miller JS, Min KS (2009) Oxidation leading to reduction: redox-induced electron transfer (RIET). Angew Chem Int Ed 48:262–272.  https://doi.org/10.1002/anie.200705138 CrossRefGoogle Scholar
  38. 38.
    Teki Y, Shirokoshi M, Kanegawa S, Sato O (2011) ESR study of light-induced valence tautomerism of a dinuclear Co complex. Eur J Inorg Chem 3761–3767.  https://doi.org/10.1002/ejic.201100467
  39. 39.
    Kanegawa S, Shiota Y, Kang S, Takahashi K, Okajima H, Sakamoto A, Iwata T, Kandori H, Yoshizawa K, Sato O (2016) Directional electron transfer in crystals of [CrCo] dinuclear complexes achieved by chirality-assisted preparative method. J Am Chem Soc 138:14170–14173.  https://doi.org/10.1021/jacs.6b05089 CrossRefPubMedGoogle Scholar
  40. 40.
    Alley KG, Poneti G, Aitken JB, Hocking RK, Moubaraki B, Murray KS, Abrahams BF, Harris HH, Sorace L, Boskovic C (2012) A two-step valence tautomeric transition in a dinuclear cobalt complex. Inorg Chem 51:3944–3946.  https://doi.org/10.1021/ic3002527 CrossRefPubMedGoogle Scholar
  41. 41.
    Alley KG, Poneti G, Robinson PSD, Nafady A, Moubaraki B, Aitken JB, Drew SC, Ritchie C, Abrahams BF, Hocking RK, Murray KS, Bond AM, Harris HH, Sorace L, Boskovic C (2013) Redox activity and two-step valence tautomerism in a family of dinuclear cobalt complexes with a spiroconjugated bis(dioxolene) ligand. J Am Chem Soc 135:8304–8323.  https://doi.org/10.1021/ja4021155 CrossRefPubMedGoogle Scholar
  42. 42.
    Poneti G, Mannini M, Cortigiani B, Poggini L, Sorace L, Otero E, Sainctavit P, Sessoli R, Dei A (2013) Magnetic and spectroscopic investigation of thermally and optically driven valence tautomerism in thioether-bridged dinuclear cobalt-dioxolene complexes. Inorg Chem 52:11798–11805.  https://doi.org/10.1021/ic4011949 CrossRefPubMedGoogle Scholar
  43. 43.
    Mulyana Y, Alley KG, Davies KM, Abrahams BF, Moubaraki B, Murray KS, Boskovic C (2014) Dinuclear cobalt(II) and cobalt(III) complexes of bis-bidentate napthoquinone ligands. Dalton Trans 43:2499–2511.  https://doi.org/10.1039/c3dt52811a CrossRefPubMedGoogle Scholar
  44. 44.
    Madadi A, Itazaki M, Gable RW, Moubaraki B, Murray KS, Boskovic C (2015) Electronic lability in a dinuclear cobalt–bis(dioxolene) complex. Eur J Inorg Chem:4991–4995.  https://doi.org/10.1002/ejic.201500980 CrossRefGoogle Scholar
  45. 45.
    van der Meer M, Rechkemmer Y, Breitgoff FD, Marx R, Neugebauer P, Frank U, van Slageren J, Sarkar B (2016) Multiple bistability in quinonoid-bridged diiron(II) complexes: influence of bridge symmetry on bistable properties. Inorg Chem 55:11944–11953.  https://doi.org/10.1021/acs.inorgchem.6b02097 CrossRefPubMedGoogle Scholar
  46. 46.
    Minkin VI, Starikova AA, Starikov AG (2016) Quantum chemical modeling of magnetically bistable metal coordination compounds. Synchronization of spin crossover, valence tautomerism and charge transfer induced spin transition mechanisms. Dalton Trans 45:12103–12113.  https://doi.org/10.1039/c6dt01687a CrossRefPubMedGoogle Scholar
  47. 47.
    Starikov AG, Starikova AA, Chegerev MG, Minkin VI (2019) Computational modeling of spin-crossover in mixed-ligand binuclear iron and cobalt complexes with 5,6-bis(salicylideneimino)-1,10-phenanthroline. Russ J Coord Chem 45:105–111.  https://doi.org/10.1134/S1070328419020088 CrossRefGoogle Scholar
  48. 48.
    Starikov AG, Starikova AA, Chegerev MG, Minkin VI (2019) Bimetallic coordination compounds of 5,6-bis(salicylideneimino)-1,10-phenanthroline: a quantum-chemical study of spin transitions. Russ Chem Bull 68:725–731.  https://doi.org/10.1007/s11172-019-2479-2 CrossRefGoogle Scholar
  49. 49.
    Starikova AA, Chegerev MG, Starikov AG, Minkin VI (2019) Cobalt and iron complexes with an azomethine derivative of 1,10-phenanthroline: a quantum-chemical study. Dokl Chem 487:168–172.  https://doi.org/10.1134/S0012500819070036 CrossRefGoogle Scholar
  50. 50.
    Starikova AA, Chegerev MG, Starikov AG, Minkin VI (2019) Rational design of electronically labile dinuclear Fe and Co complexes with 1,10-phenanthroline-5,6-diimine: a DFT study. J Comput Chem 40:2284–2292.  https://doi.org/10.1002/jcc.26005 CrossRefPubMedGoogle Scholar
  51. 51.
    Smith GF, Cagle Jr FW (1947) The improved synthesis of 5-nitro-1, 10-phenanthroline. J Organomet Chem 12:781–784.  https://doi.org/10.1021/jo01170a007 CrossRefGoogle Scholar
  52. 52.
    Weber B, Obel J, Henner-Vásquez D, Bauer W (2009) Two new iron(II) spin-crossover complexes with N4O2 coordination sphere and spin transition around room temperature. Eur J Inorg Chem:5527–5534.  https://doi.org/10.1002/ejic.200900846 CrossRefGoogle Scholar
  53. 53.
    Bauer W, Lochenie C, Weber B (2014) Synthesis and characterization of 1D iron(II) spin crossover coordination polymers with hysteresis. Dalton Trans 43:1990–1999.  https://doi.org/10.1039/c3dt52635f CrossRefPubMedGoogle Scholar
  54. 54.
    Starikov AG, Minkin VI, Starikova AA (2014) Spin crossover in Co(Salen) monoadducts with pyridine and imidazole: quantum chemical calculations. Struct Chem 25:1865–1871.  https://doi.org/10.1007/s11224-014-0473-8 CrossRefGoogle Scholar
  55. 55.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta Jr JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) GAUSSIAN 16 (Revision A.03). Gaussian, Inc., Wallingford, CTGoogle Scholar
  56. 56.
    Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401.  https://doi.org/10.1103/PhysRevLett.91.146401 CrossRefPubMedGoogle Scholar
  57. 57.
    Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) Comparative assessment of a new nonempirical density functional: molecules and hydrogen-bonded complexes. J Chem Phys 119:12129–12137.  https://doi.org/10.1063/1.1626543 CrossRefGoogle Scholar
  58. 58.
    Bannwarth A, Schmidt SO, Peters G, Sonnichsen FD, Thimm W, Herges R, Tuczek F (2012) FeIII spin-crossover complexes with photoisomerizable ligands: experimental and theoretical studies on the ligand-driven light-induced spin change effect. Eur J Inorg Chem 2776–2783.  https://doi.org/10.1002/ejic.201101227 CrossRefGoogle Scholar
  59. 59.
    Cirera J, Paesani F (2012) Theoretical prediction of spin-crossover temperatures in ligand-driven light-induced spin change systems. Inorg Chem 51:8194–8201.  https://doi.org/10.1021/ic300750c CrossRefPubMedGoogle Scholar
  60. 60.
    Starikov AG, Starikova AA, Minkin VI (2016) Quantum-chemical study of spin crossover in cobalt complexes with an o-benzoquinone ligand. Dokl Chem 467:83–87.  https://doi.org/10.1134/S0012500816030113 CrossRefGoogle Scholar
  61. 61.
    Starikova AA, Chegerev MG, Starikov AG, Minkin VI (2018) A DFT computational study of the magnetic behavior of cobalt dioxolene complexes of tetraazamacrocyclic ligands. Comp Theor Chem 1124:15–22.  https://doi.org/10.1016/j.comptc.2017.12.007 CrossRefGoogle Scholar
  62. 62.
    Piskunov AV, Pashanova KI, Ershova IV, Bogomyakov AS, Smolyaninov IV, Starikov AG, Kubrin SP, Fukin GK (2018) Pentacoordinated clorido-bis-o-iminosemiquinonato Mn(III) and Fe(III) complexes. J Mol Struct 1165:51–61.  https://doi.org/10.1016/j.molstruc.2018.03.091 CrossRefGoogle Scholar
  63. 63.
    Cirera J, Via-Nadal M, Ruiz E (2018) Benchmarking density functional methods for calculation of state energies of first row spin-crossover molecules. Inorg Chem 57:14097–14105.  https://doi.org/10.1021/acs.inorgchem.8b01821 CrossRefPubMedGoogle Scholar
  64. 64.
    Minkin VI, Starikov AG, Starikova AA (2018) Computational insight into magnetic behaviour and properties of the transition metal complexes with redox-active ligands: a DFT Approach. Pure Appl Chem 90:811–824.  https://doi.org/10.1515/pac-2017-0803 CrossRefGoogle Scholar
  65. 65.
    Noodleman L (1981) Valence bond description of antiferromagnetic coupling in transition metal dimmers. J Chem Phys 74:5737–5743.  https://doi.org/10.1063/1.440939 CrossRefGoogle Scholar
  66. 66.
    Shoji M, Koizumi K, Kitagawa Y, Kawakami T, Yamanaka S, Okumura M, Yamaguchi K (2006) A general algorithm for calculation of Heisenberg exchange integrals J in multispin systems. Chem Phys Lett 432:343–347.  https://doi.org/10.1016/j.cplett.2006.10.023 CrossRefGoogle Scholar
  67. 67.
    Chemcraft: vers. 1.7 (2013) http://www.chemcraftprog.com
  68. 68.
    Bally T (2010) Isomerism: the same but different. Nat Chem 2:165–166.  https://doi.org/10.1038/nchem.564 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Physical and Organic ChemistrySouthern Federal UniversityRostov-on-DonRussian Federation

Personalised recommendations