Explosive vapor detection using novel graphdiyne nanoribbons—a first-principles investigation

  • R. Bhuvaneswari
  • V. Nagarajan
  • R. ChandiramouliEmail author
Original Research


We investigated the capability of graphdiyne nanoribbon (GdNR) to detect the existence of explosive vapors like hexogen or cyclonite, hexamethylene triperoxide diamine (HMTD), and 2,4,6-trinitrotoluene (TNT) using ATK-VNL package. In order to determine the sensing response of GdNR towards these explosive vapors, the geometric firmness of the material is first verified with the assistance of cohesive energy. Then, electronic characteristics like the projected density of states (PDOS) spectrum, band structure, and electron density are examined for both isolated and explosive vapor adsorbed GdNR. Further, adsorption attributes like average energy gap variation, enthalpy adsorption, adsorption energy, and Bader charge transfer are explored for explosive vapor adsorbed GdNR. Moreover, there is a need for rapid detection of explosive vapors using solid-state chemical sensors. The scrutinization of these attributes affirms the employment of GdNR as a chief material in a chemical nanosensor to perceive the availability of the mentioned explosive vapors.


Graphdiyne Nanoribbon Explosive vapors Energy gap Charge transfer 


Funding information

The authors wish to express their sincere thanks to Nano Mission Council (No.SR/NM/NS-1011/2017(G)) Department of Science & Technology, India for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–670PubMedCrossRefGoogle Scholar
  2. 2.
    Ivanovskii AL (2013) Graphynes and graphdyines. Prog Solid State Chem 41:1–19CrossRefGoogle Scholar
  3. 3.
    Long M, Tang L, Wang D, Li Y, Shuai Z (2011) Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons : Theoretical Predictions. ACS Nano 5:2593–2600PubMedCrossRefGoogle Scholar
  4. 4.
    Li G, Li Y, Liu H, Li G, Li Y, Liu H, Guo Y, Zhu D (2010) Architecture of graphdiyne nanoscale films. Chem Commun 46:3256–3259CrossRefGoogle Scholar
  5. 5.
    Pei Y (2012) Mechanical properties of graphdiyne sheet. Phys B Phys Condens Matter 407:4436–4439CrossRefGoogle Scholar
  6. 6.
    Srinivasu K, Ghosh SK (2012) Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications. J Phys Chem C 116:5951–5956CrossRefGoogle Scholar
  7. 7.
    Yang N (2013) Photocatalytic properties of graphdiyne and graphene modified TiO2: From Theory to Experiment. ACS Nano 7:1504–1512PubMedCrossRefGoogle Scholar
  8. 8.
    Pan Y, Wang Y, Wang L, Zhong H, Quhe R, Ni Z, Ye M, Mei W, Shi J, Guo W, Yang J, Lu J (2015) Graphdiyne–metal contacts and graphdiyne transistors. Nanoscale 7:2116–2127PubMedCrossRefGoogle Scholar
  9. 9.
    He J, Zhou P, Zhang CX, He C, Sun LZ (2012) Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT + U calculations. J Phys Chem C 116:26313–26321CrossRefGoogle Scholar
  10. 10.
    Zhang S, Liu H, Huang C, Cui G, Li Y (2015) Bulk graphdiyne powder applied for highly efficient lithium storage. Chem Commun 51:1834–1837CrossRefGoogle Scholar
  11. 11.
    Parvin N, Jin Q, Wei Y, Yu R, Zheng B, Huang L, Zhang Y, Wang L, Zhang H, Gao M, Zhao H, Hu W, Li Y, Wang D (2017) Few-layer graphdiyne nanosheets applied for multiplexed real-time DNA detection. Adv Mater 29:1606755CrossRefGoogle Scholar
  12. 12.
    Haley MM, Brand SC, Pak JJ (1997) Carbon networks based on dehydrobenzoannulenes: synthesis of graphdiyne substructures. Angew Chem Int Ed Eng 36:835–838CrossRefGoogle Scholar
  13. 13.
    Haley MM (2008) Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitecture. Pure Appl Chem 80:519–532CrossRefGoogle Scholar
  14. 14.
    Pari S, Cue A, Wong BM (2016) Structural and electronic properties of graphdiyne carbon nanotubes from large-scale DFT calculations. J Phys Chem C 120:18871–18877CrossRefGoogle Scholar
  15. 15.
    Jiao Y, Du A, Hankel M, Zhu Z, Rudolph V, Smith SC (2011) Graphdiyne: a versatile nanomaterial for electronics and hydrogen purification. Chem Commun 47:11843–11845CrossRefGoogle Scholar
  16. 16.
    Chen X, Gao P, Guo L, Zhang S (2015) Graphdiyne as a promising material for detecting amino acids. Sci Rep 5:16720PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Nagarajan V, Chandiramouli R (2018) Investigation of NH3 adsorption behavior on graphdiyne nanosheet and nanotubes: a first-principles study. J Mol Liq 249:24–32CrossRefGoogle Scholar
  18. 18.
    Nagarajan V, Srimathi U, Chandiramouli R (2018) First-principles insights on detection of dimethyl amine and trimethyl amine vapors using graphdiyne nanosheets. Comput Theor Chem 1123:119–127CrossRefGoogle Scholar
  19. 19.
    Srimathia U, Nagarajan V, Chandiramouli R (2018) Interaction of imuran, pentasa and hyoscyamine drugs and solvent effects on graphdiyne nanotube as a drug delivery system - a DFT study. J Mol Liq 265:199–207CrossRefGoogle Scholar
  20. 20.
    Srimathia U, Nagarajan V, Chandiramouli R (2019) Investigation on graphdiyne nanosheet in adsorption of sorafenib and regorafenib drugs : a DFT approach. J Mol Liq 277:776–785CrossRefGoogle Scholar
  21. 21.
    Topuz S, Alpertunga B (2003) Determination of cyclonite ( RDX ) in human plasma by high-performance liquid chromatography. Il Farmaco 58:445–448PubMedCrossRefGoogle Scholar
  22. 22.
    Vodochodský O, Jalový Z, Matyáš R, Novotná M (2019) Determination of triacetone triperoxide and hexamethylene triperoxide diamine in various matrices using infrared spectroscopy. Appl Spectrosc 73:195–202PubMedCrossRefGoogle Scholar
  23. 23.
    Legler L (1885) Ueber producte der langsamen verbrennung des aethyläthers. 18:3343–3351CrossRefGoogle Scholar
  24. 24.
    Senesac L, Thundat TG (2008) Nanosensors for trace explosive detection. Mater Today 11:28–36CrossRefGoogle Scholar
  25. 25.
    Van Setten MJ, Giantomassi M, Bousquet E, Verstraete MJ, Hamann DR (2018) The PseudoDojo : training and grading a 85 element optimized norm-conserving pseudopotential table. Comput Phys Commun 226:39–54CrossRefGoogle Scholar
  26. 26.
    Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:533–539CrossRefGoogle Scholar
  27. 27.
    Perdew JP, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  28. 28.
    Monkhorst HJ, Pack JD (1976) Special points for. Brillonin-Zone Integrations 13(1976):5188–5192Google Scholar
  29. 29.
    Nagarajan V, Chandiramouli R (2019) Investigation on probing explosive nitroaromatic compound vapors using graphyne nanosheet : a first-principle study. Struct Chem 30:657CrossRefGoogle Scholar
  30. 30.
    Bhuvaneswari R, Nagarajan V, Chandiramouli R (2019) Investigation on bare and hydrogenated Sb-nanosheets as an electrode material for Na-ion battery - a DFT study. Phys B Phys Condens Matter 562:75–81CrossRefGoogle Scholar
  31. 31.
    Narita N (1998) Optimized geometries and electronic structures of graphyne and its family. Phys Rev B 58:9–14CrossRefGoogle Scholar
  32. 32.
    Amin B, Kaloni TP, Schwingenschlogl U (2014) Strain engineering of WS2, WSe2, and WTe2. RSC Adv 4:34561–34565CrossRefGoogle Scholar
  33. 33.
    Barraza-lopez S, Kaloni TP (2018) Water splits to degrade two-dimensional group-IV monochalcogenides in nanoseconds. ACS Cent Sci 4:1436–1446PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Mukherjee S, Kaloni TP (2012) Electronic properties of boron- and nitrogen-doped graphene : a first principles study. J Nanopart Res 14:1059CrossRefGoogle Scholar
  35. 35.
    Maria JP, Bhuvaneswari R, Nagarajan V, Chandiramouli R (2019) Diethanolamine and quaternium-15 interaction studies on antimonene nanosheet based on first-principles studies. Comput Theor Chem 1157:19–27CrossRefGoogle Scholar
  36. 36.
    Mukhopadhyay S, Scheicher RH, Pandey R, Karna SP (2011) Sensitivity of boron nitride nanotubes toward biomolecules of different polarities. J Phys Chem Lett 2:2442–2447CrossRefGoogle Scholar
  37. 37.
    Soltani A, Baei MT, Lemeski ET, Shahini M (2014) Sensitivity of BN nano-cages to caffeine and nicotine molecules. Superlattice Microst 76:315–325CrossRefGoogle Scholar
  38. 38.
    Srimathia U, Nagarajan V, Chandiramouli R (2019) Germanane nanosheet as a novel biosensor for liver cirrhosis based on adsorption of biomarker volatiles – a DFT study. Appl Surf Sci 475:990–998CrossRefGoogle Scholar
  39. 39.
    Bhuvaneswari R, Nagarajan V, Chandiramouli R (2019) Arsenene nanoribbons for sensing NH3 and PH3 gas molecules – a first-principles perspective. Appl Surf Sci 469:173–180CrossRefGoogle Scholar
  40. 40.
    Yoosefian M, Pakpour A, Etminan N (2018) Nanofilter platform based on functionalized carbon nanotubes for adsorption and elimination of Acrolein, a toxicant in cigarette smoke. Appl Surf Sci 444:598–603CrossRefGoogle Scholar
  41. 41.
    Snehha P, Nagarajan V, Chandiramouli R (2019) Germanene nanotube electroresistive molecular device for detection of NO2 and SO2 gas molecules: a first-principles investigation. J Comput Electron 18:308–318CrossRefGoogle Scholar
  42. 42.
    Bhuvaneswari R, Nagarajan V, Chandiramouli R (2019) Germanene nanosheets as a novel anode material for sodium-ion batteries — a first-principles investigation Germanene nanosheets as a novel anode material for sodium-ion batteries — a first-principles investigation. Mater Res Express 6:035504CrossRefGoogle Scholar
  43. 43.
    Rad AS, Abedini E (2016) Chemisorption of NO on Pt-decorated graphene as modified nanostructure media : a first principles study. Appl Surf Sci 360:1041–1046CrossRefGoogle Scholar
  44. 44.
    Shokuhi A, Mehdi S, Aali E, Peyravi M (2017) Study on the electronic structure of Cr- and Ni-doped fullerenes upon adsorption of adenine : a comprehensive DFT calculation. Diam Relat Mater 77:116–121CrossRefGoogle Scholar
  45. 45.
    Karlicky F, Otyepkova E, Lo R, Pitonak M, Jurecka P, Pykal M, Hobza P, Otyepka M (2017) Adsorption of organic molecules to van der Waals materials: comparison of fluorographene and fluorographite with graphene and graphite. J Chem Theory Comput 13:1328–1340PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Osouleddini N, Rastegar SF (2019) DFT study of the CO2 and CH4 assisted adsorption on the surface of graphene. J Electron Spectros Relat Phenomena 232:105–110CrossRefGoogle Scholar
  47. 47.
    Bhuvaneswari R, Nagarajan V, Chandiramouli R (2019) First-principles analysis of the detection of amine vapors using an antimonene electroresistive molecular device. J Comput Electron. CrossRefGoogle Scholar
  48. 48.
    Ahmadi A, Noei M (2014) The alkali and alkaline earth metal doped ZnO nanotubes : DFT studies. Phys B Phys Condens Matter 432:105–110CrossRefGoogle Scholar
  49. 49.
    Beheshtian J, Ahmadi A, Noei M (2013) Sensing behavior of Al and Si doped BC3 graphenes to formaldehyde. Sensors Actuators B Chem 181:829–834CrossRefGoogle Scholar
  50. 50.
    Bhuvaneswari R, Chandiramouli R (2019) First-principles investigation on detection of phosgene gas molecules using phosphorene nanosheet device. Chem Phys Lett 717:99–106CrossRefGoogle Scholar
  51. 51.
    Ahmadi A, Somayeh P (2015) Selective detection of F2 in the presence of CO , N2 , O2 , and H2 molecules using a ZnO nanocluster. Z Monatsh Chem 146:1233–1239CrossRefGoogle Scholar
  52. 52.
    Rastegar SF, Peyghan AA, Hadipour NL (2013) Response of Si- and Al-doped graphenes toward HCN : a computational study. Appl Surf Sci 265:412–417CrossRefGoogle Scholar
  53. 53.
    Chigo E, Shakerzadeh E (2018) Adsorption and possible dissociation of glucose by the [BN fullerene:B6] magnetic nanocomposite. In silico studies. Appl Nanosci 8:455CrossRefGoogle Scholar
  54. 54.
    Chandiramouli R (2018) Antimonene nanosheet device for detection of explosive vapors – a first- principles inspection. Chem Phys Lett 708:130–137CrossRefGoogle Scholar
  55. 55.
    Chigo Anota E, Cortes Arriagada D, Bautista Hernández A, Castro M (2017) In silico characterization of nitric oxide adsorption on a magnetic [B24N36 fullerene/(TiO2)2] nanocomposite. Appl Surf Sci 400:283–292CrossRefGoogle Scholar
  56. 56.
    Bhuvaneswari R, Nagarajan V, Chandiramouli R (2018) Arsenene nanotube as a chemical sensor to detect the presence of explosive vapors: a first-principles insight. J Inorg Organomet Polym Mater 28:2844–2853CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electrical & Electronics EngineeringSASTRA Deemed UniversityThanjavurIndia

Personalised recommendations