Advertisement

Computational study of [(phenanthroline)2FeII/III–(terephthalate)–CoIII/II(phenanthroline)2]3+ binuclear complex

  • Hossein ShiraniEmail author
  • Hassan Sabzyan
Original Research
  • 26 Downloads

Abstract

Bistability of the proposed [(phenanthroline)2FeII/III–(terephthalate)–CoIII/II(phenanthroline)2]3+ binuclear complex, arising from intramolecular FeII/III ↔ CoIII/II charge transfer, is investigated based on energetics, geometries, atomic charges, electric polarizabilities, and IR and UV-Vis spectra obtained computationally at (TD)DFT-B3LYP/LANL2DZ level of theory. Two distinct stable states are obtained which have different characteristics, including structures, charge distributions, and spectroscopic properties. Also, the well-defined first-order saddle point obtained between these two states using the QST3 search method, having a 1.182 eV activation (barrier) energy for the FeIICoIII → FeIIICoII reaction, furthermore approves bistability in this complex. This value of activation energy suggests that switching between the two charge distribution states FeII–CoIII and FeIII–CoII in this complex may be induced by electric field and/or infrared radiation, and thus, it can be candidate as an infrared radiation- or electric field-driven molecular two-state switch.

Keywords

Bistability Binuclear complex Iron Cobalt Phenanthroline (TD)B3LYP/LanL2DZ 

Notes

Acknowledgments

Supports from the Islamic Azad University in the form of research facilities are appreciated.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sato O, Tao J, Zhang Y (2007) Control of magnetic properties through external stimuli. Angew Chem Int Ed 46:2152–2187CrossRefGoogle Scholar
  2. 2.
    Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100:1685–1716PubMedCrossRefGoogle Scholar
  3. 3.
    Migliori M, Reiff WM, Arif AM, Miller JS (2004) Observation of hysteretic bistability in [CoIIICp2]+[FeIIII4]. Inorg Chem 43:6875–6877PubMedCrossRefGoogle Scholar
  4. 4.
    Dei A, Gatteschi D, Sangregorio C, Sorace LA (2004) Quinonoid metal complexes: toward molecular switches. Chem Res 37:827–835CrossRefGoogle Scholar
  5. 5.
    Jang YH, Goddard WA (2010) Stoddart-Heath [2]Rotaxane molecular switch made simple: a density functional theory study on model junction devices. J Phys Chem C 114:4611–4616CrossRefGoogle Scholar
  6. 6.
    Raymo FM, Alvarado RJ, Pacsial EJ, Alexander D Electron transport in self-assembled bipyridinium multilayers. J Phys Chem B 108(2004):8622–8625Google Scholar
  7. 7.
    Liu T, Zhang YJ, Kanegawa S, Sato O (2010) Photoinduced metal-to-metal charge transfer toward single-chain magnet. J Am Chem Soc 132:8250–8251PubMedCrossRefGoogle Scholar
  8. 8.
    Feringa BLA (2001) In control of motion: from molecular switches to molecular motors. Acc Chem Res 34:504–513PubMedCrossRefGoogle Scholar
  9. 9.
    Dei A (2005) Photomagnetische effekte in polycyanometallaten: entsteht aus chemischer grundlagenforschung eine interessante zukünftige technik? Angew Chem Int Ed 117:1184–1187CrossRefGoogle Scholar
  10. 10.
    Venkataramani S, Jana U, Dommaschk M, Soennichsen FD, Tuczek F, Herges R (2011) Magnetic bistability of molecules in homogeneous solutions at room temperature. Science 331:445–448PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Sato O, Iyoda T, Fujishima A, Hashimoto K (1996) Photoinduced magnetization of a cobalt-Iron cyanide. Science 272:704–705PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Sessoli R (2010) Magnetic clusters: spinning into control. Nat Chem 2:346–347CrossRefGoogle Scholar
  13. 13.
    Takahashi K, Cui H-B, Okano Y, Kobayashi H, Mori H, Tajima H, Einaga Y, Sato O (2008) Evidence of the chemical uniaxial strain effect on electrical conductivity in the spin-crossover conducting molecular system: [FeIII(qnal)2][Pd(dmit)2]5 center dot acetone. J Am Chem Soc 130:6688–6689PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Miyasaka H, Motokawa N, Matsunaga S, Yamashita M, Sugimoto K, Mori T, Toyota N, Dunbar KR (2010) Control of charge transfer in a series of Ru2(II,II)/TCNQ two-dimensional networks by tuning the electron affinity of TCNQ units: a route to synergistic magnetic/conducting materials. J Am Chem Soc 132:1532–1544PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Bleuzen A, Marvaud V, Mathoniére C, Sieklucka B, Verdaguer M (2009) Photomagnetism in clusters and extended molecule-based magnets. Inorg Chem 48:3453–3466PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Létard J-F, Guionneau P, Goux-Capes L (2004) Spin crossover in transition metal compounds III, vol 235. Springer-Verlag, Berlin, p 221CrossRefGoogle Scholar
  17. 17.
    Szaciłowski K (2008) Digital information processing in molecular systems. Chem Rev 108:3481–3548PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Zhang J, Zou Q, Tian H (2013) Photochromic materials: more than meets the eye. Adv Mater 25:378–399CrossRefGoogle Scholar
  19. 19.
    Russew MM, Hecht S (2010) Photoswitches: from molecules to materials. Adv Mater 22:3348–3360PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Zheng YB, Pathem BK, Hohman JN, Thomas JC, Kim M, Weiss PS (2013) Photoresponsive molecules in well-defined nanoscale environments. Adv Mater 25:302–312PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Klajn R (2014) Spiropyran-based dynamic materials. Chem Soc Rev 43:148–184PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kahn O, Martinez CJ (1998) spin-transition polymers: from molecular materials toward memory devices. Science 279:44–48CrossRefGoogle Scholar
  23. 23.
    Ohkoshi SI, Imoto K, Tsunobuchi Y, Takano S, Tokoro H (2011) light-induced spin-crossover magnet. Nat Chem 3:564–569PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J Chem Phys 105:11024–11031CrossRefGoogle Scholar
  25. 25.
    Linares J, Codjovi E (2012) Y. Garcia pressure and temperature spin crossover sensors with optical detection. Sensors 12:4479–4492PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Matsuda M, Isozaki H, Tajima H (2008) Reproducible on-off switching of the light emission from the electroluminescent device containing a spin crossover complex. Thin Solid Films 517:1465–1467CrossRefGoogle Scholar
  27. 27.
    Moodera JS, Koopmans B, Oppeneer PM (2014) On the path toward organic spintronics. MRS Bull 39:578–581CrossRefGoogle Scholar
  28. 28.
    Eisenhart RJ, Clouston LJ, Lu CC (2015) Configuring bonds between first-row transition metals. Acc Chem Res 48:2885–2894PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Lichtenberger DL, Calabro DC, Kellogg GE (1984) Electronic structure and bonding characteristics of cyclopentadienyl d 8 metal-ligand complexes. Core and valence ionization study of CpM(CO)2 where M = Co and Rh and Cp = η5-C5H5 and η5-C5Me5. Organometallics 11:1623–1630CrossRefGoogle Scholar
  30. 30.
    Holland PL (2008) Electronic structure and reactivity of three-coordinate iron complexes. Acc Chem Res 41:905–914PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ravikumar I, Ghosh P (2012) Recognition and separation of sulfate anions. Chem Soc Rev 41:3077–3098PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Wenzel M, Hiscock JR, Gale PA (2012) Anion receptor chemistry: highlights from 2010. Chem Soc Rev 41:480–520PubMedCrossRefGoogle Scholar
  33. 33.
    Leong WL, Vittal JJ (2010) One-dimensional coordination polymers: complexity and diversity in structures, properties, and applications. Chem Rev 111:688–764PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Hayami S, Hiki K, Kawahara T, Maeda Y, Urakami D, Inoue K, Ohama M, Kawata S, Sato O (2009) Photo-induced spin transition of Iron(III) compounds with pi-pi intermolecular interactions. Chem Eur J 15:3497–3508PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Nevill SM, Moubaraki B, Murray KS, Kepert CG (2007) A thermal spin transition in a nanoporous iron(II) coordination framework material. Angew Chem Int Ed 119:2105–2108CrossRefGoogle Scholar
  36. 36.
    Halder G, Kepert CJ, Moubaraki B, Murray KS, Cashion JD (2002) Guest-dependent spin crossover in a nanoporous molecular framework material. Science 298:1762–1765PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Hauser A, Vef A, Adler P (1991) Intersystem crossing dynamics in Fe(lI) coordination compounds. J Chem Phys 95:8710–8717CrossRefGoogle Scholar
  38. 38.
    Liu T, Darensbourg YM (2007) A Mixed-Valent, Fe(II)Fe(I), Diiron complex reproduces the unique rotated state of the [FeFe]hydrogenase active site. J Am Chem Soc 129:7008–7009PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Moussa NO, Molnàr G, Bonhommeau S, Zwick A, Mouri S, Tanaka K, Real JA, Bousseksou A (2005) Selective photoswitching of the binuclear spin crossover compound {[Fe(bt)(NCS)2]2(bpm)} into two distinct macroscopic phases. PRL 94:107205–107209CrossRefGoogle Scholar
  40. 40.
    Nicolet Y, de Lacey AL, Vernède X, Fernandez VM, Hatchikian EC, Fontecilla-Camps JC (2001) Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from desulfovibrio desulfuricans. J Am Chem Soc 123:1596–1601PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Cheah MH, Tard C, Borg SJ, Liu X, Ibrahim SK, Pickett CJ, Best SP (2007) Modeling [Fe-Fe] hydrogenase: evidence for bridging carbonyl and distal iron coordination vacancy in an electrocatalytically competent proton reduction by an iron thiolate assembly that operates through Fe(0)-Fe(II) levels. J Am Chem Soc 129:11085–11092PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Moussa NO, Trzop E, Mouri S, Zein S, Molnár G, Gaspar AB, Collet E, Buron-Le Cointe M, Real JA, Borshch S, Tanaka K, Cailleau H, Bousseksou A (2007) Wavelength selective light-induced magnetic effects in the binuclear spin crossover compound {[Fe(bt)(NCS)2]2(bpym)}. Phys Rev B 75:054101–054108CrossRefGoogle Scholar
  43. 43.
    Satcher Jr JH, Droege MW, Olmstead MM, Balch AL (2001) A mixed oxidation state, binuclear iron complex containing an unsymmetrically coordinating ligand. A ligand-induced switch in redox behavior. Inorg Chem 40:1454–1458PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Gütlich P, Gaspar AB, Garcia Y (2013) Spin state switching in iron coordination compounds. Beilstein J Org Chem 9:342–391PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Mouri S, Moussa NO, Molnár G, Real JA, Gaspar AB, Bousseksou A, Tanaka K (2008) Light induced excited spin state trapping in the binuclear spin crossover compound [Fe(bpym)(NCS)2]2(bpym) exhibiting a high-spin ground state. Chem Phys Lett 456:215–219CrossRefGoogle Scholar
  46. 46.
    Mulder DW, Shepard EM, Meuser JE, Joshi N, King PW, Posewitz MC, Broderick JB, Peters JW (2011) Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure 19:1038–1052PubMedCrossRefGoogle Scholar
  47. 47.
    Winkler M, Senger M, Duan J, Esselborn J, Wittkamp F, Hofmann E, Apfel UP, Stripp ST, Happe T (2017) Accumulating the hydride state in the catalytic cycle of [FeFe]-hydrogenases. Nat Commun 8:16115–16117PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Wang HY, Mijangos E, Ott S, Thapper A (2014) Water oxidation catalyzed by a dinuclear cobalt-Polypyridine complex. Angew Chem Int Ed 53:1–5CrossRefGoogle Scholar
  49. 49.
    Wang Y, Li J, Zhang L, Chen C, Feng R, Zhao Y, Zhang YQ, Tan G, Song Y, Wang X (2018) Magnetic on–off switching in redox non-innocent ligand bridged binuclear cobalt complexes. Dalton Trans 47:17211–17215PubMedCrossRefGoogle Scholar
  50. 50.
    Wang WZ, Wu Y, Ismayilov RH, Kuo JH, Yeh CY, Lee HW, Fu MD, Chen C h, Lee GH, Peng SM (2014) A magnetic and conductive study on a stable defective extended cobalt atom chain. Dalton Trans 43:6229–6235PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Fortier S, Roy JJL, Chen CH, Vieru V, Murugesu M, Chibotaru LF, Mindiola DJ, Caulton KG (2013) A dinuclear cobalt complex featuring unprecedented anodic and cathodic redox switches for single-molecule magnet activity. J Am Chem Soc 135:14670–14678PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Mulyana Y, Alley KG, Davies KM, Abrahams BF, Moubaraki B, Murray KS, Boskovi C (2014) Dinuclear cobalt(II) and cobalt(III) complexes of bis-bidentate napthoquinone ligands. Dalton Trans 43:2499–2511PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Madadi A, Itazaki M, Gable RW, Moubaraki B, Murray KS, Boskovi C (2015) Electronic lability in a dinuclear cobalt bis-dioxolene complex. Eur J Inorg Chem:4991–4995CrossRefGoogle Scholar
  54. 54.
    Jana NC, Brandão P, Saha A, Panja A (2017) Synthesis, crystal structure and electronic property of a tetraoxolene bridged dinuclear cobalt(II) complex with bipyridyl blocking ligand. Polyhedron 138:31–36CrossRefGoogle Scholar
  55. 55.
    Fujisawa K, Yamada S, Yanagi Y, Yoshioka Y, Kiyohara A, Tsutsumi O (2015) Tuning the photoluminescence of condensed-phase cyclic trinuclear Au(I) complexes through control of their aggregated structures by external stimuli. Sci Rep 5:7934–7937PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Rawashdeh-Omary MA, Omary MA, Jr JP (2001) Fackler, Chemistry and optoelectronic properties of stacked supramolecular entities of trinuclear gold(I) complexes sandwiching small organic acids. J Am Chem Soc 123:9689–9691PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Hong EYH, Yam VWW (2017) Triindole-tris-alkynyl-bridged trinuclear gold(I) complexes for cooperative supramolecular self-assembly and small-molecule solution-processable resistive memories. ACS Appl Mater Interfaces 9:2616–2624PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Steinert M, Schneider B, Dechert S, Demeshko S, Meyer F (2014) A trinuclear defect-grid Iron(II) spin crossover complex with a large hysteresis loop that is readily silenced by solvent vapor. Angew Chem Int Ed 53:6135–6139CrossRefGoogle Scholar
  59. 59.
    Pittala N, Thetiot F, Charles C, Triki S, Boukheddaden K, Chastanetc G, Marchivie M (2017) Unprecedented trinuclear FeII triazole-based complex exhibiting a concerted and complete sharp spin transition above room temperature. Chem Commun 53:8356–8359CrossRefGoogle Scholar
  60. 60.
    Maruyama T, Kikukawa Y, Sakiyama H, Katayama M, Inadad Y, Hayashi Y (2017) A highly-flexible cyclic-decavanadate ligand for interconversion of dinuclear-and trinuclearcobalt(II) and manganese(II) cores. RSC Adv 7:37666–37674CrossRefGoogle Scholar
  61. 61.
    Donamaría R, Gimeno MC, Lippolis V, López-de-Luzuriaga JM, Monge M, Elena Olmos M (2016) Tuning the luminescent properties of a Ag/Au tetranuclear complex featuring metallophilic interactions via solvent-dependent structural isomerization. Inorg Chem 55:11299–11310PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Bursten BE, Chisholm MH, Clark RJH, Firth S, Hadad CM, MacIntosh AM, Wilson PJ, Woodward PM, Zaleski JM (2002) Oxalate-bridged complexes of dimolybdenum and ditungsten supported by pivalate ligands: (tBuCO2)3M2(μ-O2CCO2)M2(O2CtBu)3. Correlation of the solid-State, molecular, and electronic structures with raman, resonance raman, and electronic spectral data. J Am Chem Soc 124:3050–3063PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Akine S (2018) Dynamic helicity control of oligo(salamo)-based metal helicates. Inorganics 80:1–19Google Scholar
  64. 64.
    Dai Z, Lee J, Zhang W (2012) Chiroptical switches: applications in sensing and catalysis. molecules 17:1247–1277PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Pavlović G, Majerb M, Cindric M (2016) A tetranuclear cubane-like nickel(II) complex with a tridentate salicylideneimine schiff base ligand: tetrakis[l3-4-methyl-N-(2-oxidophenyl)-salicylideneiminato]tetrakis [methanolnickel(II)] methanol 0.8-solvate. Acta Cryst 72:1776–1779Google Scholar
  66. 66.
    Ghisolfi A, Waldvogel A, Routaboul L, Braunstein P (2014) Reversible switching of the coordination modes of a pyridine-functionalized quinonoid zwitterion; its di- and tetranuclear palladium complexes. Inorg Chem 53:5515–5526PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Matsumoto T, Newton GN, Shiga T, Hayami S, Matsui Y, Okamoto H, Kumai R, Murakami Y, Oshio H (2014) Programmable spin-state switching in a mixed-valence spin-crossover iron grid. Nat Commun 5:3865–3871PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Hogue RW, Singh S, Brooker S (2018) Spin crossover in discrete polynuclear iron(II) complexes. Chem Soc Rev 47:7303–7338PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Shirani H, Sabzyan H (2018) Computational spectroscopic characterization of a bistable binuclear complex [(CO)2 (benzoate)FeII/III(terephthalate)CoIII/II(benzoate)(CO)2]+. Aust J Chem 71:348–359CrossRefGoogle Scholar
  70. 70.
    Sabzyan H, Shirani H (2018) Bistability of an iron-cobalt binuclear complex. Int J Quantum Chem 119:1–14Google Scholar
  71. 71.
    Liu C, Liu T, Hall MB (2015) Influence of the density functional and basis set on the relative stabilities of oxygenated isomers of diiron models for the active site of [FeFe]-Hydrogenase. J Chem Theory Comput 11:205–214PubMedCrossRefGoogle Scholar
  72. 72.
    Yang Y, Michael NW, Kenneth MM (2009) Assessment of the “6-31+G**+LANL2DZ” mixed basis bet coupled with density functional theory methods and the effective core potential: prediction of heats of formation and ionization potentials for First-Row-Transition-Metal complexes. J Phys Chem A 113:9843–9851PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Liu T, Li B, Singleton ML, Hall MB, Darensbourg MY (2009) Sulfur oxygenates of biomimetics of the diiron subsite of the [FeFe]-Hydrogenase active site: properties and oxygen damage repair possibilities. J Am Chem Soc 131:8296–8307PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11:10757–10816PubMedCrossRefGoogle Scholar
  75. 75.
    Mikhail N (1997) Glukhovtsev, Performance of the B3LYP/ECP DFT calculations of iron-containing compounds. J Phys Chem A 101:316–323CrossRefGoogle Scholar
  76. 76.
    Balzani V (ed) (2001) Electron transfer in chemistry, vol 1-5. Wiley, WeinheimGoogle Scholar
  77. 77.
    Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103:3899–4031PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    A. Nitzan, Chemical dynamics in condensed phases; relaxation, transfer, and reactions in condensed molecular systems, oxford university press, oxford, 2006.Google Scholar
  79. 79.
    Chen H, Ratner MA, Schatz GC (2011) Theoretical calculation of the photo-induced electron transfer rate between a gold atom and a gold cation solvated in CCl4. J Photochem Photobiol A 221:143–147CrossRefGoogle Scholar
  80. 80.
    Skourtis SS, Waldeck DH, Beratan DN (2010) Fluctuations in biological and bioinspired electron-transfer reactions. Annu Rev Phys Chem 61:461–485PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Ricks AB, Solomon GC, Colvin MT, Scott AM, Chen K, Ratner MA, Wasielewski MR (2010) controlling electron transfer in donor-bridge-acceptor molecules using cross-conjugated bridges. J Am Chem Soc 132:15427–15434PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Anson WC, Ghosh S, Schiffer HS, Stahl SS (2016) Co(salophen)-catalyzed aerobic oxidation of p-Hydroquinone: mechanism and implications for aerobic oxidation catalysis. J Am Chem Soc 138:4186–4193PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Corcos RA, Villanueva O, Walroth CR, Sharma KS, Bacsa J, Lancaster MK, MacBeth EC, Berry FJ (2016) Oxygen activation by Co(II) and a redox non-innocent ligand: spectroscopic characterization of a radical–Co(II)-superoxide complex with divergent catalytic reactivity. J Am Chem Soc 138:1–5CrossRefGoogle Scholar
  84. 84.
    Guo XK, Zhang LB, Wei D, Niu JL (2015) Mechanistic insights into cobalt(II/III)-catalyzed C-H oxidation: a combined theoretical and experimental study. Chem Sci 6:7059–7071PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Li M, Li D, OKeeffe M, Yaghi OM (2014) Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem Rev 114:1343–1370PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Ying-Ji S, Qian-Qian H, Tano T, Itoh S (2013) Flavonolate complexes of MII (M = Mn, Fe, Co, Ni, Cu, and Zn). Structural and functional models for the ES (enzyme-substrate) complex of quercetin 2,3-Dioxygenase. Inorg Chem 52:10936–10948CrossRefGoogle Scholar
  87. 87.
    Balamurugan M, Suresh E, Palaniandavar M (2016) μ-oxo-and bis(μ-carboxylato)-bridged biiron(III) complexes of a 3N ligand as catalysts for alkane hydroxylation: steroelectronic factors of carboxylate bridge determine the catalytic efficiency. Dalton Trans 45:11422–11436PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  89. 89.
    Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105(22):9982–9985CrossRefGoogle Scholar
  90. 90.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110 13:6158–6170CrossRefGoogle Scholar
  91. 91.
    Xu X (2004) The extended Perdew-Burke-Ernzerhof functional with improved accuracy for thermodynamic and electronic properties of molecular systems. J Chem Phys 121:4068–4082PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Becke AD (1993) Density-functional thermochemistry III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  93. 93.
    Lee C, Yang W, Parr RG (1988) Development of the colic-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  94. 94.
    Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  95. 95.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994). J Phys Chem 98:11623–11810CrossRefGoogle Scholar
  96. 96.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241CrossRefGoogle Scholar
  97. 97.
    Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577CrossRefGoogle Scholar
  98. 98.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford, 2009.Google Scholar
  99. 99.
    GaussView 03, Gaussian Inc., Pittsburg 15106, USAGoogle Scholar
  100. 100.
    Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000CrossRefGoogle Scholar
  101. 101.
    Peng CY, Ayala P, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49–56CrossRefGoogle Scholar
  102. 102.
    Athanassios CT (2014) DFT flavor of coordination chemistry. Coord Chem Rev 272:1–29CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, College of Science, Arak BranchIslamic Azad UniversityArakIran
  2. 2.Department of ChemistryUniversity of IsfahanIsfahanIran

Personalised recommendations