Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Structural features and N-H…O and O-H…O hydrogen-bonded supramolecular frameworks in 2-methylanilinium hydrogen DL-malate hydrate, 4-methoxyanilinium and 4-methylanilinium hydrogen DL-malate salts

  • 47 Accesses

Abstract

In the crystal structure of 2-methylanilinium hydrogen DL-malate hydrate (I), an additional water molecule is present in asymmetric unit. In the crystal structures of 4-methoxyanilinium hydrogen DL-malate (II) and 4-methylanilinium hydrogen DL-malate (III), the hydrogen malate anions exhibit configurational disorder with major component occupy S-configuration and minor component occupy R-configuration provided both (II) and (III) are prepared from a racemic mixture of DL-malic acid. In crystal structures of compounds (I)–(III), the hydrogen malate anions and anilinium cations from O-H…O and N-H…O hydrogen bonds which exhibit interesting supramolecular frameworks. In compound (I), the N-H…O and O-H…O hydrogen-bonded anionic-cationic framework form two-dimensional hydrophilic and hydrophobic layers in which the lattice water molecules are embedded in hydrophilic layers. However, in crystal structures of (II) and (III), the hydrogen DL-malate anions form two-dimensional anionic substructure through O-H…O hydrogen bond, in which the anilinium cations are anchored through N-H…O hydrogen bonds.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    André V, Martins I, Quaresma S, Martins M, Duarte MT (2014). Struct Chem 25:707–714

  2. 2.

    Arunkumar A, Ramasamy P (2014). J Cryst Growth 388:124–131

  3. 3.

    Singh UP, Tomar K, Kashyap S (2016). Struct Chem 27:1027–1040

  4. 4.

    Maniukiewicz W, Bojarska J, Sieroń L (2018). Struct Chem 29:1525–1531

  5. 5.

    Aakeröy CB, Salmon DJ (2005). Cryst Eng Comm 7:439–448

  6. 6.

    Jin S, Wang D, Xu Y (2012). J Coord Chem 65:1953–1969

  7. 7.

    Dutkiewicz G, Dutkiewicz E, Kubicki M (2018). Struct Chem 29:1525–1531

  8. 8.

    Singh UP, Maurya RR, Kashyap S (2015). J Mol Struct 1081:128–135

  9. 9.

    Jagan R, Sathya D, Sivakumar K (2015). Acta Crystallogr C71:374–380

  10. 10.

    Kavitha SJ, Panchanatheswaran K, Low JN (2006). Acta Crystallogr C62:o165–o169

  11. 11.

    Farrell DMM, Ferguson G, Lough AJ, Glidewell C (2002). Acta Crystallogr B58:272–288

  12. 12.

    Perpétuo GJ, Janczak J (2003). Acta Crystallogr C59:o709–o711

  13. 13.

    Farrell DMM, Ferguson G, Lough AJ, Glidewell C (2002). Acta Crystallogr B58:530–544

  14. 14.

    Aakeroy CB, Nieuwenhuyzen M (1996). Chem Mater 8:1229–1235

  15. 15.

    Padmavathy R, Karthikeyan N, Sathya D, Jagan R, Sivakumar K (2016). RSC Adv 6:68468–68484

  16. 16.

    Bruker, APEX2, SAINT-Plus and SADABS (2012). Bruker AXS Inc., Madison, Wisconsin, USA

  17. 17.

    Spek AL (2003). J Appl Crystallogr 36:7–13

  18. 18.

    Sheldrick GM (2015). Acta Crystallogr C71:3–8

  19. 19.

    Farrugia LJ (1997). J Appl Crystallogr 30:565

  20. 20.

    Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008). J Appl Crystallogr 41:466–470

  21. 21.

    Turkington DE, Ferguson G, Lough AJ, Glidewell C (2004). Acta Crystallogr C60:o617–o622

  22. 22.

    Bowes KF, Ferguson G, Lough AJ, Glidewell C (2003). Acta Crystallogr C59:o329–o331

  23. 23.

    Peeters OM, Blaton NM, De Ranter CJ (1995). Acta Crystallogr C51:1435–1438

  24. 24.

    van der Sluis P, Kroon J (1985). Acta Crystallogr C41:956–959

  25. 25.

    Amor FB, Soumhi EH, Abdellahi MO, Jouini T (1995). Acta Crystallogr C51:933–935

  26. 26.

    Abdul Rahman MB, Jumbri K, Sirat K, Kia R, Fun HK (2009). Acta Crystallogr E65:o49

  27. 27.

    Janczak J, Perpétuo GJ (2003). Acta Crystallogr C59:o349–o352

  28. 28.

    Anandha babu G, Bhagavannarayana G, Ramasamy P (2008). J cryst growth 310:1228–1238

  29. 29.

    Kalaiyarasi S, Devi SR, Akilan R, Kumar RM, Chakkaravarthi G (2016). IUCr Data 1(9):x161525

  30. 30.

    Wang KW, Jin ZM, Pan YJ (2005). J Chem Cryst 35:413–417

  31. 31.

    Aakeroey CB, Nieuwenhuyzen M (1994). J Am Chem Soc 116:10983–10991

Download references

Acknowledgments

The authors thank the Sophisticated Analytical Instruments Facility, Indian Institute of Technology Madras, for the single-crystal data collection.

Author information

Correspondence to Jagan Rajamoni.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(FCF 160 kb)

ESM 2

(FCF 201 kb)

ESM 3

(FCF 164 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rajamoni, J., Kandasamy, S. Structural features and N-H…O and O-H…O hydrogen-bonded supramolecular frameworks in 2-methylanilinium hydrogen DL-malate hydrate, 4-methoxyanilinium and 4-methylanilinium hydrogen DL-malate salts. Struct Chem (2019). https://doi.org/10.1007/s11224-019-01441-7

Download citation

Keywords

  • Supramolecular
  • Hydrogen bond
  • Hydrogen DL-malate
  • Framework
  • Disorder