Structural Chemistry

, Volume 30, Issue 6, pp 2015–2027 | Cite as

From clusters to crystals: scale chemistry of intermetallics

  • Vladimir Ya. Shevchenko
  • Inna V. Medrish
  • Gregory D. Ilyushin
  • Vladislav A. BlatovEmail author
Review Article


We review different approaches to description, classification, and understanding of intermetallic structures of any complexity. All these approaches are based on the representation of the intermetallic structure as a periodic graph (net). A special attention is paid to the nanocluster model, which enables one to separate structural units and to describe their assemblage in intermetallics with strict computer algorithms. We demonstrate the abilities of the model with analysis of 12,315 intermetallic structures from the Inorganic Crystal Structure Database.


Nanocluster Intermetallics Self-assembly Modeling Topology 


Funding information

This work was supported by the Russian Foundation for Basic Research, projects 18-03-00443 and 19-02-00636.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Intermetallic Chemistry (2008) Vol. 13, Ferro R, Saccone A (Eds.) PergamonGoogle Scholar
  2. 2.
    Pöttgen R, Johrendt D (2014) Intermetallics : synthesis, structure, function, De GruyterGoogle Scholar
  3. 3.
    Steurer W, Dshemuchadse J (2016) Intermetallics : structures, properties, and statistics. Press, Oxford UniversityCrossRefGoogle Scholar
  4. 4.
    Akhmetshina TG, Blatov VA, Proserpio DM, Shevchenko AP (2018). Acc Chem Res 51:21CrossRefGoogle Scholar
  5. 5.
    Kripyakevich PI (1977) Structural types of intermetallic compounds. Nauka (in Russian)Google Scholar
  6. 6.
    Gladyshevskii EI, Bodak OI (1982) Crystal chemistry of intermetallic compounds of rare-earth metals. Shkola, Vischa (in Russian)Google Scholar
  7. 7.
    Frank FC, Kasper JS (1958). Acta Cryst 11:184CrossRefGoogle Scholar
  8. 8.
    Bergman G, Waugh JLT, Pauling L (1957). Acta Cryst 10:254CrossRefGoogle Scholar
  9. 9.
    Mackay AL (1962). Acta Cryst 15:1916Google Scholar
  10. 10.
    Tsai AP, Guo JQ, Abe E, Takakura H, Sato TJ (2000). Nature 408:537CrossRefGoogle Scholar
  11. 11.
    Pearson WB (1972) The crystal chemistry and physics of metals and alloys, Wiley-InterscienceGoogle Scholar
  12. 12.
    Blatov VA, Ilyushin GD, Proserpio DM (2010). Inorg Chem 49:1811CrossRefGoogle Scholar
  13. 13.
    Blatov VA, Alexandrov EV, Shevchenko AP (2019) Topology: ToposPro, ElsevierGoogle Scholar
  14. 14.
    VYa S, Blatov VA, Ilyushin GD (2009). Struct Chem 20:975CrossRefGoogle Scholar
  15. 15.
    Alexandrov EV, Blatov VA, Kochetkov AV, Proserpio DM (2011). CrystEngComm 13:394CrossRefGoogle Scholar
  16. 16.
    Ilyushin GD (2012). Struc Chem 20:975Google Scholar
  17. 17.
    Deiseroth HJ, Strunck A, Bauhofer WZ (1988). Anorg Allg Chem 558:128CrossRefGoogle Scholar
  18. 18.
    Blatov VA (2012). Struct Chem 23:955CrossRefGoogle Scholar
  19. 19.
    Blatov VA, Shevchenko AP, Proserpio DM (2014). Cryst Growth Des 14:3576 Accessed 14 Oct 2019
  20. 20.
    Pankova AA, Akhmetshina TG, Blatov VA, Proserpio DM (2015). Inorg Chem 54:6616CrossRefGoogle Scholar
  21. 21.
    Zandbergen HW, Van Tendeloo G, De Moolj DB, Buschow KHJ (1989). J Less-Common Met 154:375CrossRefGoogle Scholar
  22. 22.
    O’Keeffe M, Peskov MA, Ramsden SJ, Yaghi OM (2008). Acc Chem Res 41:1782CrossRefGoogle Scholar
  23. 23.
    Blatov VA (2016). Struct Chem 27:1605CrossRefGoogle Scholar
  24. 24.
    Jena P, Sun Q (2018). Chem Rev 118:5755CrossRefGoogle Scholar
  25. 25.
    Mariscal MM, Oviedo OA, Leiva EPM (2012) Metal clusters and nanoalloys: from modeling to applications, SpringerGoogle Scholar
  26. 26.
    Tappe F, Schwickert C, Linsinger S, Pöttgen R (2011). Monatsh Chem 142:1087CrossRefGoogle Scholar
  27. 27.
    Makineni SK, Samanta A, Rojhirunsakool T, Alam T, Nithin B, Singh AK, Banerje R, Chattopadhyay K (2015). Acta Mater 97:29CrossRefGoogle Scholar
  28. 28.
    Gulay NL, YuB T, YaM K, Kaczorowski D (2018). J Alloys Compd 731:222CrossRefGoogle Scholar
  29. 29.
    Lux R, Kuntze V, Hillebrecht H (2012). Solid State Sci 14:1445CrossRefGoogle Scholar
  30. 30.
    Salamakha PS, YuM P, Sologub OL, Bodak OI (1994). J Alloys Compd 215:51CrossRefGoogle Scholar
  31. 31.
    He W, Zhand J, Zeng L (2007). Powder Diffract 22:312CrossRefGoogle Scholar
  32. 32.
    Arnberg L (1980). Acta Cryst B36:527CrossRefGoogle Scholar
  33. 33.
    Shoemaker CB, Keszler DA, Shoemaker DP (1989). Acta Cryst B45:13CrossRefGoogle Scholar
  34. 34.
    Grin YN, Rogl P, Hiebl K (1986). J Less-Common Met 121:497CrossRefGoogle Scholar
  35. 35.
    Grushko B, Kapush D (2014). J Alloys Compd 594:127CrossRefGoogle Scholar
  36. 36.
    von Schnering HG, Llanos J, Chang J-H, Peters K, Peters E-M, Nesper R (2005). Ζ Kristallogr 220:324Google Scholar
  37. 37.
    Zimmermann S, Pantenburg I, Meyer G (2012). Crystals 2:704CrossRefGoogle Scholar
  38. 38.
    Cenzual K, Chabot B, Parthe E (1985). Acta Cryst C41:313Google Scholar
  39. 39.
    Férey G (2000). J Solid State Chem 152:37CrossRefGoogle Scholar
  40. 40.
    Ilyushin GD, Blatov VA (2009). Acta Cryst B65:300CrossRefGoogle Scholar
  41. 41.
    Pankova AA, Blatov VA, Ilyushin GD, Proserpio DM (2013). Inorg Chem 52:13094CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSaint PetersburgRussia
  2. 2.Samara Center for Theoretical Material Science (SCTMS)Samara State Technical UniversitySamaraRussia
  3. 3.Samara Center for Theoretical Material Science (SCTMS)Samara National Research University named after academician S. P. KorolyevSamaraRussia
  4. 4.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics”Russian Academy of SciencesMoscowRussia

Personalised recommendations