Advertisement

Structural Chemistry

, Volume 30, Issue 6, pp 2057–2084 | Cite as

Small atomic clusters: quantum chemical research of isomeric composition and physical properties

  • Alexander S. SharipovEmail author
  • Boris I. Loukhovitski
Review Article
  • 197 Downloads

Abstract

In this review, we give a brief summary of methodological and computational aspects of determination of structure and different size-dependent properties of small atomic clusters by means of computational quantum chemistry. Particular attention is paid to the accurate calculation of thermodynamic properties of clusters with allowance for the vibrational anharmonicity and contribution of excited electronic states. We describe in detail the problems and consequences related to accounting for the contribution of isomeric forms to the observable physical and thermodynamic characteristics. The physical size-dependent properties discussed in this review are the binding energy, zero-point energy, collision diameter, polarizabilities, ionization potential, electron affinity, specific heat capacity, and reduced Gibbs energy. The major part of the review deals with the methodology for physically sound extrapolating the multitude of size-dependent physical and thermodynamic properties of small clusters toward significantly larger (nanometer- and micrometer-sized) particles.

Keywords

Atomic clusters Structure Physical properties Thermochemistry Size effects 

Notes

Funding information

This work was supported by the Russian Foundation for Basic Research (projects nos. 16-29-01098 and 18-08-00476).

Compliance with Ethical Standards

We declare that all the co-authors are aware of and approve of the submission.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Polarz S (2004) . In: Encyclopedia of nanoscience and nanotechnology, vol 6. American Scientific Publishers, pp 179–196Google Scholar
  2. 2.
    Baletto F, Ferrando R (2005) . Rev Mod Phys 77:371Google Scholar
  3. 3.
    Roduner E (2006) . Chem Soc Rev 35:583PubMedGoogle Scholar
  4. 4.
    Berry RS, Smirnov BM (2013) . Comput Theor Chem 1021:2Google Scholar
  5. 5.
    Kleis J, Greeley J, Romero NA, Morozov VA, Falsig H, Larsen AH, Lu J, Mortensen JJ, Dułak M., Thygesen KS, Nørskov JK, Jacobsen KW (2011) . Catal Lett 141:1067Google Scholar
  6. 6.
    Smirnov BM (2017) . Phys Usp 60:1236Google Scholar
  7. 7.
    Ferrando R, Jellinek J, Johnston RL (2008) . Chem Rev 108:845PubMedGoogle Scholar
  8. 8.
    Blanco-Andujar C, Tung LD, Thanh NTK (2010) . Annu Rep Prog Chem., Sect A 106:553Google Scholar
  9. 9.
    Homberger M, Simon U (2010) . Phil Trans R Soc A 368:1405PubMedGoogle Scholar
  10. 10.
    Alexandrova AN, Boldyrev A, Zhai HJ, Wang LS (2006) . Coord Chem Rev 250:2811Google Scholar
  11. 11.
    Claridge SA, Castleman AW Jr, Khanna SN, Murray CB, Sen A, Weiss PS (2009) . ACS Nano 3:244PubMedGoogle Scholar
  12. 12.
    Castleman AW Jr, Khanna SN (2009) . J Phys Chem C 113:2664Google Scholar
  13. 13.
    Jagiello K, Chomicz B, Avramopoulos A, Gajewicz A, Mikolajczyk A, Bonifassi P, Papadopoulos MG, Leszczynski J, Puzyn T (2017) . Struct Chem 28:635Google Scholar
  14. 14.
    Wagemans RW, van Lenthe JH, de Jongh PE, Van Dillen AJ, de Jong K.P. (2005) . J Am Chem Soc 127:16675PubMedGoogle Scholar
  15. 15.
    Møller KT, Sheppard D, Ravnsbæk DB, Buckley CE, Akiba E, Li HW, Jensen TR (2017) . Energies 10:1645Google Scholar
  16. 16.
    Springborg M, Kohaut S, Dong Y, Huwig K (2017) . Comput Theor Chem 1107:14Google Scholar
  17. 17.
    Van-Devener B, Anderson SL (2006) . Energy Fuels 20:1886Google Scholar
  18. 18.
    Shushkov SV, Genarova TN, Leshchevich VV, Penyazkov OG, Gusakova SV, Egorov AS, Govorov MI, Prismotrov YA (2012) . J Eng Phys Thermophys 85:867Google Scholar
  19. 19.
    Sundaram D, Yang V, Yetter RA (2017) . Prog Energy Combust Sci 61:293Google Scholar
  20. 20.
    Starik AM, Sharipov AS, Loukhovitski BI, Savel’ev AM (2016) . Phys Scr 91:013004Google Scholar
  21. 21.
    Guerieri PM, DeLisio JB, Zachariah MR (2017) . Combust Flame 176:220Google Scholar
  22. 22.
    Lukhovitskii BI, Sharipov AS (2018) . J Eng Phys Thermophys 91(3):766Google Scholar
  23. 23.
    Nittler LR, O’DAlexander CM, Gao X, Walker RM, Zinner E (1997) . Astrophys J 483:475Google Scholar
  24. 24.
    Henning T (1998) . Chem Soc Rev 27:315.  https://doi.org/10.1039/A827315Z CrossRefGoogle Scholar
  25. 25.
    Mann I., Meyer-Vernet N., Czechowski A. (eds) (2012) Astrophysics and space science library. V. 385. Nanodust in the solar system: Discoveries and interpretations, astrophysics and space science library, vol 385. Springer, BerlinGoogle Scholar
  26. 26.
    Bromley ST, Goumans TPM, Herbst E, Jonese AP, Slater B (2014) . Phys Chem Chem Phys 16:18623PubMedGoogle Scholar
  27. 27.
    Kammler HK, Madler L, Pratsinis SE (2001) . Chem Eng Technol 24:583Google Scholar
  28. 28.
    Karasev VV, Onischuk AA, Glotov OG, Baklanov AM, Maryasov AG, Zarko VE, Panfilov VN, Levykin AI, Sabelfeld KK (2004) . Combust Flame 138:40Google Scholar
  29. 29.
    Gurentsov E, Priemchenko K, Grimm H, Orthner H, Wiggers H, Borchers C, Jander H, Eremin A, Schulz C (2013) . Z Phys Chem 227:357Google Scholar
  30. 30.
    Lam J, Amans D, Dujardin C, Ledoux G, Allouche AR (2015) . J Phys Chem A 119:8944PubMedGoogle Scholar
  31. 31.
    Savel’ev AM, Starik AM (2018) . Combust Flame 196:223Google Scholar
  32. 32.
    Ostrikov K, Murphy AB (2007) . J Phys D: Appl Phys 40:2223Google Scholar
  33. 33.
    Stoffels WW, Stoffels E, Ceccone G, Rossi F, Vac J (1999) . Sci Technol A 17(6):3385.  https://doi.org/10.1116/1.582070 CrossRefGoogle Scholar
  34. 34.
    Swihart MT (2003) . Curr Opin Colloid Interface Sci 8:127.  https://doi.org/10.1016/S1359-0294(03)00007-4 CrossRefGoogle Scholar
  35. 35.
    Ostrikov K (2005) . Rev Mod Phys 77:489.  https://doi.org/10.1103/RevModPhys.77.489 CrossRefGoogle Scholar
  36. 36.
    Vitiello M, Amoruso S, Altucci C, de Lisio C, Wang X (2005) . Appl Surf Sci 248:163.  https://doi.org/10.1016/j.apsusc.2005.03.019 CrossRefGoogle Scholar
  37. 37.
    Kathmann SM, Schenter G, Garrett BC, Chen B, Siepmann JI (2009) . J Phys Chem C 113:10354Google Scholar
  38. 38.
    Catlow CRA, Bromley ST, Hamad S, Mora-Fonz M, Sokol AA, Woodley SM (2010) . Phys Chem Chem Phys 12:786PubMedGoogle Scholar
  39. 39.
    Smirnov BM (2011) . Phys-Usp 54:691Google Scholar
  40. 40.
    Nowack B, Bucheli TD (2007) . Environ Pollut 150:5PubMedGoogle Scholar
  41. 41.
    Sizochenko N, Rasulev B, Gajewicz A, Kuz’min V, Puzync T, Leszczynski J (2014) . Nanoscale 6:13986PubMedGoogle Scholar
  42. 42.
    Martin P, Zhang P, Rodger PM, Valsami-Jones E (2019) Nanoimpact, p 100147Google Scholar
  43. 43.
    Moullet I, Martins JL, Reuse F, Buttet J (1990) . Phys Rev Lett 65:476PubMedGoogle Scholar
  44. 44.
    Hohm U, Loose A, Maroulis G, Xenides D (2000) . Phys Rev A 61:053202Google Scholar
  45. 45.
    Neukermans S, Veldeman N, Janssens E, Lievens P, Chen Z, Schleyer PvR (2007) . Eur Phys J D 45:301.  https://doi.org/10.1140/epjd/e2007-00283-5 CrossRefGoogle Scholar
  46. 46.
    Heiles S, Schäfer S, Schäfer R (2011) . J Chem Phys 135:034303PubMedGoogle Scholar
  47. 47.
    Wales DJ, Doye JPK (2003) . J Chem Phys 119:12409Google Scholar
  48. 48.
    Li ZH, Truhlar DG (2014) . Chem Sci 5:2605Google Scholar
  49. 49.
    Grigoryan VG, Springborg M (2019) . Phys Chem Chem Phys 21:5646.  https://doi.org/10.1039/C9CP00123A CrossRefPubMedGoogle Scholar
  50. 50.
    Sharipov AS, Loukhovitski BI, Starik AM (2013) . Phys Scr 88(058307):10ppGoogle Scholar
  51. 51.
    Loukhovitski BI, Sharipov AS, Starik AM (2015) . J Phys Chem A 119:1369PubMedGoogle Scholar
  52. 52.
    Matsko NL, Uspenskii YA, Tikhonov EV, Baturin VS, Lepeshkin SV (2016) . J Chem Phys 145:074313.  https://doi.org/10.1063/1.4960675 CrossRefPubMedGoogle Scholar
  53. 53.
    Seal P, Zheng J, Truhlar DG (2015) . J Phys Chem C 119:10085Google Scholar
  54. 54.
    Berry RS, Smirnov BM (2013) . Phys Rep 527:205Google Scholar
  55. 55.
    Gu X, Bulusu S, Li X, Zeng XC, Li J, Gong XC, Wang LS (2007) . J Phys Chem C 111:8228Google Scholar
  56. 56.
    Li ZH, Jasper AW, Truhlar DG (2007) . J Am Chem Soc 129:14899PubMedGoogle Scholar
  57. 57.
    Mejia-Rosales S (2018) Metal nanoparticles and clusters. Springer, Cham, pp 289–326. chap. simulation of metal clusters and nanostructuresGoogle Scholar
  58. 58.
    Johnston RL (1998) . Phil Trans R Soc Lond A 356:211–230Google Scholar
  59. 59.
    Baturin VS, Lepeshkin SV, Matsko NL, Oganov AR, Uspenskii YA (2014) . Europhys Lett 106:37002Google Scholar
  60. 60.
    Duanmu K, Friedrich J, Truhlar DG (2016) . J Phys Chem C 120:26110.  https://doi.org/10.1021/acs.jpcc.6b08371 CrossRefGoogle Scholar
  61. 61.
    Rahane AB, Deshpande M, Kumar V (2011) . J Phys Chem C 115:18111Google Scholar
  62. 62.
    Kiohara VO, Carvalho EFV, Paschoal CWA, Machado FB, Roberto-Neto O (2013) . Chem Phys Lett 568:42Google Scholar
  63. 63.
    Irving BJ, Naumkin FY (2014) . Phys Chem Chem Phys 16:7697PubMedGoogle Scholar
  64. 64.
    Reber AC, Khanna SN (2015) . J Chem Phys 142:054304PubMedGoogle Scholar
  65. 65.
    Muz I, Canko O, Atiş M, Yildirim EK (2015) . J Comput Chem 36:385PubMedGoogle Scholar
  66. 66.
    Boldyrev A, Wang LS (2016) . Phys Chem Chem Phys 18:11589PubMedGoogle Scholar
  67. 67.
    Papakondylis A, Mavridis A (2017) . Comput Theor Chem 1115:217Google Scholar
  68. 68.
    Poskrebyshev GA (2018) . Comput Theor Chem 1143:52Google Scholar
  69. 69.
    Gobrecht D, Decin L, Cristallo S, Bromley ST (2018) . Chem Phys Lett 711:138Google Scholar
  70. 70.
    Sharipov AS, Loukhovitski BI, Starik AM (2015) . Eur Phys J D 69:211.  https://doi.org/10.1140/epjd/e2015-60308-0 CrossRefGoogle Scholar
  71. 71.
    Loukhovitski BI, Sharipov AS, Starik AM (2016) . Eur Phys J D 70:250.  https://doi.org/10.1140/epjd/e2016-70429-5 CrossRefGoogle Scholar
  72. 72.
    Loukhovitski BI, Sharipov AS, Starik AM (2017) . Chem Phys 493:61Google Scholar
  73. 73.
    Loukhovitski BI, Torokhov SA, Loukhovitskaya EE, Sharipov AS (2018) . Struct Chem 29:49.  https://doi.org/10.1007/s11224-017-1000-5  https://doi.org/10.1007/s11224-017-1000-5 CrossRefGoogle Scholar
  74. 74.
    Loukhovitski BI, Sharipov AS (2018) . Struct Chem 29:1573.  https://doi.org/10.1007/s11224-018-1163-8 CrossRefGoogle Scholar
  75. 75.
    Sharipov AS, Loukhovitski BI (2019) . Eur Phys J D 73:14Google Scholar
  76. 76.
    Rossi G, Ferrando R (2009) . J Phys Condens Matter 21:084208PubMedGoogle Scholar
  77. 77.
    Weigend F, Ahlrichs R (2010) . Phil Trans R Soc A 368:1245PubMedGoogle Scholar
  78. 78.
    Avaltroni F, Corminboeuf C (2012) . J Comput Chem 33:502PubMedGoogle Scholar
  79. 79.
    Heiles S, Johnston RL (2013) . Int J Quantum Chem 113:2091.  https://doi.org/10.1002/qua.24462 CrossRefGoogle Scholar
  80. 80.
    Kanters RPF, Donald KJ (2014) . J Chem Theory Comput 10:5729PubMedGoogle Scholar
  81. 81.
    Bytheway I, Kepert DL (1992) . J Math Chem 9:161Google Scholar
  82. 82.
    Cogollo-Olivo BH, Seriani N, Montoya JA (2015) . Chem Phys 461:20Google Scholar
  83. 83.
    Zhai HJ, Wang LS, Alexandrova AN, Boldyrev A (2002) . J Chem Phys 117:7917Google Scholar
  84. 84.
    Zhai HJ, Wang LS, Alexandrova AN, Boldyrev A, Zakrzewski VG (2003) . J Phys Chem A 107:9319Google Scholar
  85. 85.
    Tekin A, Hartke B (2005) . J Theor Comput Chem 4:1119.  https://doi.org/10.1142/S0219633605002008 CrossRefGoogle Scholar
  86. 86.
    Ota Y, Ruiz-Barragan S, Machida M, Shiga M (2016) . Chem Phys Lett 648:119Google Scholar
  87. 87.
    Lepeshkin SV, Baturin VS, Uspenskii YA, Oganov AR (2019) . J Phys Chem Lett 10:102PubMedGoogle Scholar
  88. 88.
    Jäger M., Schäfer R., Johnston RL (2018) . Adv Phys: X 3:1516514Google Scholar
  89. 89.
    Jørgensen MS, Larsen UF, Jacobsen KW, Hammer B (2018) . J Phys Chem A 122:1504PubMedGoogle Scholar
  90. 90.
    Leary RH (1997) . J Global Optim 11:35Google Scholar
  91. 91.
    Yang SH, Draboldz DA, Adams JB, Ordejón P., Glassford K (1997) . J Phys Condens Matter 9:L39Google Scholar
  92. 92.
    Marques JMC, Pais AACC, Abreu PE (2012) . J Comput Chem 33:442PubMedGoogle Scholar
  93. 93.
    Doye JP, Wales DJ, Miller MA (1998) . J Chem Phys 109:8143Google Scholar
  94. 94.
    Andreeva NA, Chaban VV (2015) . Chem Phys Lett 622:72Google Scholar
  95. 95.
    Hartke B (2003) . Eur Phys J D 24:57Google Scholar
  96. 96.
    Schönborn S. E., Goedecker S, Roy S, Oganov AR (2009) . J Chem Phys 130:144108PubMedGoogle Scholar
  97. 97.
    Jørgensen MS, Groves MN, Hammer B (2017) . J Chem Theory Comput 13:1486PubMedGoogle Scholar
  98. 98.
    Stewart JJP (1989) . J Comp Chem 10:209Google Scholar
  99. 99.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) . J Am Chem Soc 107:3902Google Scholar
  100. 100.
    Rocha GB, Freire RO, Simas AM, Stewart JJ (2006) . J Comput Chem 27:1101PubMedGoogle Scholar
  101. 101.
    Vosko SH, Wilk L, Nusair M (1980) . Can J Phys 58:1200Google Scholar
  102. 102.
    Wilson PJ, Bradley TJ, Tozer DJ (2001) . J Chem Phys 115:9233Google Scholar
  103. 103.
    Hamprecht FA, Cohen A, Tozer DJ, Handy NC (1998) . J Chem Phys 109:6264Google Scholar
  104. 104.
    Keal TW, Tozer DJ (2005) . J Chem Phys 123:121103PubMedGoogle Scholar
  105. 105.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992) . J Chem Phys 96:6796Google Scholar
  106. 106.
    Medvedev MG, Bushmarinov IS, Sun J, Perdew JP, Lyssenko KA (2017) . Science 355:aah5975Google Scholar
  107. 107.
    Hait D, Head-Gordon M (2018) . J Chem Theory Comput 14:1969.  https://doi.org/10.1021/acs.jctc.7b01252 CrossRefPubMedGoogle Scholar
  108. 108.
    Marjewski AA, Medvedev MG, Gerasimov IS, Panova MV, Perdew JP, Lyssenko KA, Dmitrienko AO (2018) . Mendeleev Commun 28:225Google Scholar
  109. 109.
    Grimme S (2006) . J Chem Phys 124 128(16pp):034108Google Scholar
  110. 110.
    Čížek J (1966) . J Chem Phys 45:4256Google Scholar
  111. 111.
    Bartlett RJ, Musial M (2007) . Rev Mod Phys 79:291Google Scholar
  112. 112.
    Labanc D, Sulka M, Pitonak M, Cernusak I, Urban M, Neogrady P (2018) . Mol Phys 116:1259Google Scholar
  113. 113.
    Zhao Y, Pu J, Lynch BJ, Truhlar DG (2004) . Phys Chem Chem Phys 6:673Google Scholar
  114. 114.
    Misquitta AJ, Szalewicz K (2005) . J Chem Phys 123:214103PubMedGoogle Scholar
  115. 115.
    Su NQ, Pernot P, Xu X, Savin A (2017) . J Mol Model 23:65PubMedGoogle Scholar
  116. 116.
    Barone V (2004) . J Chem Phys 120:3059PubMedGoogle Scholar
  117. 117.
    Tantirungrotechai Y, Phanasant K, Roddecha S, Surawatanawong P, Sutthikhum V, Limtrakul J (2006) . J Mol Struct (Theochem) 760:189Google Scholar
  118. 118.
    Brown NJ, Bastien LAJ, Price PN (2011) . Prog Energy Combust Sci 37:565Google Scholar
  119. 119.
    Jasper AW, Miller JA (2014) . Combust Flame 161:101Google Scholar
  120. 120.
    Kresin VV, Scheidemann A (1993) . J Chem Phys 98:6982Google Scholar
  121. 121.
    Mazza T, Devetta M, Milani P, Bongiorno G, Coreno M, Piseri P (2011) . New J Phys 13:023009Google Scholar
  122. 122.
    Shadman M, Yeganegi S, Ziaie F (2009) . Chem Phys Lett 467:237Google Scholar
  123. 123.
    Hirschfelder JO, Eliason MA (1957) . Annals New York Acad Sci 67(9):451.  https://doi.org/10.1111/j.1749-6632.1957.tb46069.x CrossRefGoogle Scholar
  124. 124.
    Svehla RA (1962) Estimated viscosities and thermal conductivities of gases at high temperatures. Tech. rep., NASA Technical Report R-132Google Scholar
  125. 125.
    Kang SH, Kunc JA (1991) . J Phys Chem 95:6971Google Scholar
  126. 126.
    Kang SH, Kunc JA (1991) . Phys Rev A 44:3596PubMedGoogle Scholar
  127. 127.
    Sharipov AS, Titova NS, Starik AM (2012) . Combust Theory Model 16:842.  https://doi.org/10.1080/13647830.2012.663102 CrossRefGoogle Scholar
  128. 128.
    Cambi R, Cappelletti D, Liuti G, Pirani F (1991) . J Chem Phys 95:1852.  https://doi.org/10.1063/1.461035 CrossRefGoogle Scholar
  129. 129.
    Carstensen HH, Dean AM (2007) Comprehensive chemical kinetics. Modeling chemical reactions. Elsevier, Amsterdam, pp 101–184. chap. The kinetics of pressure-dependent reactionsGoogle Scholar
  130. 130.
    Sharipov AS, Loukhovitski BI, Tsai CJ, Starik AM (2014) . Eur Phys J D 68(4):99.  https://doi.org/10.1140/epjd/e2014-40831-2 CrossRefGoogle Scholar
  131. 131.
    Piela L (2007) Ideas of quantum chemistry. Elsevier, AmsterdamGoogle Scholar
  132. 132.
    Mehio N, Dai S, Jiang D (2014) . J Phys Chem A 118:1150PubMedGoogle Scholar
  133. 133.
    Andrienko GA Chemcraft version 1.8 http://www.chemcraftprog.com
  134. 134.
    Bonin KD, Kresin VV (1997) Electric-dipole polarizabilities of atoms, molecules, and clusters. World Scientific, SingaporeGoogle Scholar
  135. 135.
    Maroulis G, Hohm U (2007) . Phys Rev A 76:032504Google Scholar
  136. 136.
    Otero N, Alsenoy CV, Karamanis P, Pouchan C (2013) . Comput Theor Chem 1021:114Google Scholar
  137. 137.
    de Heer WA (1993) . Rev Mod Phys 65:611–676Google Scholar
  138. 138.
    Heiles S, Schäfer R (2014) Dielectric properties of isolated clusters: beam deflection studies. Springer, DordrechtGoogle Scholar
  139. 139.
    Schäfer S, Assadollahzadeh B, Mehring M, Schwerdtfeger P, Schäfer R (2008) . J Phys Chem A 112:12312PubMedGoogle Scholar
  140. 140.
    Kaplan IG (2006) Intermolecular interactions: physical picture, computational methods and model potentials. Wiley, HobokenGoogle Scholar
  141. 141.
    Ghanty TK, Ghosh SK (1993) . J Phys Chem 97:4951Google Scholar
  142. 142.
    Jaque P, Toro-Labbe A (2002) . J Chem Phys 117:3208Google Scholar
  143. 143.
    Zhang DY, Begue D, Pouchan C (2004) . Chem Phys Lett 398:283Google Scholar
  144. 144.
    Mang CY, Zhao X, He LX, Liu CP, Wu KC (2008) . J Phys Chem A 112:1661PubMedGoogle Scholar
  145. 145.
    Blair SA, Thakkar AJ (2013) . Chem Phys Lett 556:346Google Scholar
  146. 146.
    Cammi R, Cossi M, Tomasi J (1996) . J Chem Phys 104:4611.  https://doi.org/10.1063/1.471208 CrossRefGoogle Scholar
  147. 147.
    Kurtz HA, Stewart JJ, Dieter KM (1990) . J Comput Chem 11:82Google Scholar
  148. 148.
    Maroulis G (2012) . Struct Bond 149:95–130Google Scholar
  149. 149.
    Dalskov EK, Sauer SPA (1998) . J Phys Chem A 102:5269Google Scholar
  150. 150.
    Christiansen O, Hattig C, Gauss J (1998) . J Chem Phys 109: 4745Google Scholar
  151. 151.
    Ajitha D, Vaval N, Pal S (1999) . J Chem Phys 110:2316Google Scholar
  152. 152.
    Sadlej AJ (1988) . Collec Czech Chem Commun 53:1995Google Scholar
  153. 153.
    Sadlej AJ (1991) . Theor Chim Acta 81:45Google Scholar
  154. 154.
    Rappoport D, Furche F (2010) . J Chem Phys 133:134105PubMedGoogle Scholar
  155. 155.
    Mohajeri A, Alipour M (2012) . J Chem Phys 136:124111PubMedGoogle Scholar
  156. 156.
    Sun H, Autschbach J (2013) . ChemPhysChem 14:2450PubMedGoogle Scholar
  157. 157.
    Alipour M, Fallahzadeh P (2017) . Theor Chem Acc 136:22Google Scholar
  158. 158.
    Maroulis G, Xenides D (1999) . J Phys Chem A 103:4590Google Scholar
  159. 159.
    Reis H, Papadopoulos MG, Boustani I (2000) . Int J Quantum Chem 78:131Google Scholar
  160. 160.
    Bak KL, Gauss J, Helgaker T, Jørgensen P., Olsen J (2000) . Chem Phys Lett 319:563Google Scholar
  161. 161.
    Hickey AL, Rowley CN (2014) . J Phys Chem A 118:3678PubMedGoogle Scholar
  162. 162.
    Cohen AJ, Mori-Sanchez P, Yang W (2012) . Chem Rev 112:289PubMedGoogle Scholar
  163. 163.
    Sharipov AS, Loukhovitski BI, Starik AM (2017) . J Phys B: At Mol Opt Phys 50(165101):19ppGoogle Scholar
  164. 164.
    Truhlar DG, Verma P (2017) . Phys Chem Chem Phys 19:12898.  https://doi.org/10.1039/C7CP01576C CrossRefPubMedGoogle Scholar
  165. 165.
    Raghavachari K, Frisch MJ, Pople JA (1980) . J Chem Phys 72:4244Google Scholar
  166. 166.
    Wu T, Kalugina YN, Thakkar AJ (2015) . Chem Phys Lett 635:257Google Scholar
  167. 167.
    Bishop DM (1990) . Rev Mod Phys 62:343Google Scholar
  168. 168.
    Pederson MR, Baruah T, Allen PB, Schmidt C (2005) . J Chem Theory Comput 1:590PubMedGoogle Scholar
  169. 169.
    Egidi F, Giovannini T, Piccardo M, Bloino J, Cappelli C, Barone V (2014) . J Chem Theory Comput 10:2456PubMedPubMedCentralGoogle Scholar
  170. 170.
    Aguado A, Vega A, Balbas LC (2011) . Phys Rev B 84:165450Google Scholar
  171. 171.
    Loukhovitski BI, Sharipov AS, Starik AM (2016) . J Phys B: At Mol Opt Phys 49:125102Google Scholar
  172. 172.
    Li ZH, Truhlar DG (2008) . J Am Chem Soc 130:12698PubMedGoogle Scholar
  173. 173.
    Petersilka M, Gossmann UJ, Gross EKU (1996) . Phys Rev Lett 76:1212PubMedGoogle Scholar
  174. 174.
    Dreuw A, Head-Gordon M (2005) . Chem Rev 105:4009PubMedGoogle Scholar
  175. 175.
    Deng JL, Su KH, Wang X, Zeng QF, Cheng LF, Xu YD, Zhang LT (2008) . Eur Phys J D 49:21Google Scholar
  176. 176.
    Kaveei E, Mohammadpour M, Jamshidi Z (2015) . J Phys Chem A 119:8579–8587PubMedGoogle Scholar
  177. 177.
    Gronowski M (2017) . Comput Theor Chem 1108:50.  https://doi.org/10.1016/j.comptc.2017.03.016 CrossRefGoogle Scholar
  178. 178.
    Miller SR, Schultz NE, Truhlar DG, Leopold DG (2009) . J Chem Phys 130:024304.  https://doi.org/10.1063/1.3008056 CrossRefPubMedGoogle Scholar
  179. 179.
    Marinelli F, Pelegatti A (1989) . Chem Phys Lett 158:545Google Scholar
  180. 180.
    Hernandez R, Simons J (1991) . J Chem Phys 94:2961Google Scholar
  181. 181.
    Massó H., Veryazov V, Malmqvist PA, Roos BO, Senent ML (2007) . J Chem Phys 127:154318PubMedGoogle Scholar
  182. 182.
    Czernek J, živny O. (2011) . Chem Phys Lett 512:40Google Scholar
  183. 183.
    Ayala PY, Schlegel HB (1998) . J Chem Phys 108:2314Google Scholar
  184. 184.
    Le TH, Do ST, Huynh LK (2017) . Comput Theor Chem 1100:61Google Scholar
  185. 185.
    Le THM, Tran TT, Huynh LK (2018) . Chemometr Intell Lab 172:10Google Scholar
  186. 186.
    Pfaendtner J, Yu X, Broadbelt LJ (2007) . Theor Chem Account 118:881Google Scholar
  187. 187.
    Sharipov AS, Starik AM (2012) . J Phys Chem A 116:8444.  https://doi.org/10.1021/jp304906u CrossRefPubMedGoogle Scholar
  188. 188.
    Landau LD, Lifshitz EM (1968) Statistical physics Part 1. V. 5: Course of theoretical physics. Pergamon, New YorkGoogle Scholar
  189. 189.
    McQuarrie DDA, Simon JJD (1999) Molecular thermodynamics. University Science, Mill ValleyGoogle Scholar
  190. 190.
    Dong Y, Springborg M, Pang Y, Morillon FM (2013) . Comput Theor Chem 1021:16Google Scholar
  191. 191.
    Katzer G, Sax AF (2002) . J Phys Chem A 106:7204Google Scholar
  192. 192.
    Fabian WMF (2008) . Monatsh Chem 139:309Google Scholar
  193. 193.
    Bross DH, Jasper AW, Ruscic B, Wagner AF (2019) . Proc Combust Inst 37:315Google Scholar
  194. 194.
    Zavitsas AA (1987) . J Phys Chem 91:5573Google Scholar
  195. 195.
    Cremer D, Wu A, Larsson A, Kraka E (2000) . J Mol Model 6:396Google Scholar
  196. 196.
    Mancera LA, Benoit DM (2016) . Phys Chem Chem Phys 18:529PubMedGoogle Scholar
  197. 197.
    Loukhovitski BI, Sharipov AS, Starik AM (2016) . In: Starik A. M., Frolov S. M. (eds) Nonequilibrium processes in physics and chemistry. Vol. 1. Plasma, clusters, and atmosphere. Torus Press, Moscow, pp 14–23Google Scholar
  198. 198.
    Loukhovitski BI, Sharipov AS (2017) In: Book of abstracts of the V Minsk International Colloquium on the physics of shock waves, combustion and detonation (in Russian), A.V. Luikov Heat and Mass Transfer Institute, Minsk, Belarus, pp. 119–121Google Scholar
  199. 199.
    Pelevkin AV, Loukhovitski BI, Sharipov AS (2017) . J Phys Chem A 121:9599.  https://doi.org/10.1021/acs.jpca.7b09964 CrossRefPubMedGoogle Scholar
  200. 200.
    Pelevkin AV, Sharipov AS (2018) . J Phys D: Appl Phys 51:184003Google Scholar
  201. 201.
    Pelevkin AV, Sharipov AS (2019) Plasma Chem. Plasma Process.  https://doi.org/10.1007/s11090-019-10008-7. (in press)Google Scholar
  202. 202.
    Fernandez-Ramos A, Miller JA, Klippenstein SJ, Truhlar DG (2006) . Chem Rev 106:4518PubMedGoogle Scholar
  203. 203.
    Bao JL, Truhlar DG (2017) . Chem Soc Rev 46:7548.  https://doi.org/10.1039/c7cs00602k CrossRefPubMedGoogle Scholar
  204. 204.
    Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) . J Chem Theory Comput 6:2872PubMedGoogle Scholar
  205. 205.
    Truhlar DG (1991) . J Comput Chem 12:266Google Scholar
  206. 206.
    Lin CY, Izgorodina EI, Coote ML (2008) . J Phys Chem A 112:1956PubMedGoogle Scholar
  207. 207.
  208. 208.
    Zheng J, Yu T, Papajak E, Alecu IM, Mielke SL, Truhlar DG (2011) . Phys Chem Chem Phys 13:10885PubMedGoogle Scholar
  209. 209.
    Sharipov AS, Loukhovitski BI, Starik AM (2016) . J Phys Chem A 120:4349PubMedGoogle Scholar
  210. 210.
    Gurvich LV, Veyts IV, Alcock CB (1989) Thermodynamics properties of individual substances. Hemisphere Pub. Co., New YorkGoogle Scholar
  211. 211.
    Pagano D, Casavola A, Pietanza LD, Colonna G, Giordano D, Capitelli M (2008) . J Thermophys Heat Transfer 22:434Google Scholar
  212. 212.
    Jensen F (2007) Introduction to computational chemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  213. 213.
    McChesney M (1964) . Can J Phys 42:2473Google Scholar
  214. 214.
    Gaston N (2018) . Adv Phys X 3:1401487Google Scholar
  215. 215.
    Assadollahzadeh B, Schafer S, Schwerdtfeger P (2010) . J Comput Chem 31:929PubMedGoogle Scholar
  216. 216.
    Yalamanchali A, Pyfer KL, Jarrold MF (2017) . J Phys Chem C 121:10242Google Scholar
  217. 217.
    Rossi K, Pavan L, Soon Y, Baletto F (2018) . Eur Phys J B 91:33Google Scholar
  218. 218.
    Soini TM, Rösch N. (2015) . Phys Chem Chem Phys 17:28463PubMedGoogle Scholar
  219. 219.
    Stillinger FH (1999) . Rev, Phys E 59:48Google Scholar
  220. 220.
    Wales DJ (1993) . Mol Phys 78:151Google Scholar
  221. 221.
    Cook DB (2012) Quantum chemistry: a unified approach. World Scientific Publishing Co Inc., SingaporeGoogle Scholar
  222. 222.
    Minyaev RM, Popov IA, Koval VV, Boldyrev A, Minkin VI (2015) . Struct Chem 26:223Google Scholar
  223. 223.
    Schreiner PR, Schaefer HF III, Schleyer PvR (1995) . J Chem Phys 103:5565Google Scholar
  224. 224.
    Ahlrichs R, Elliott SD (1999) . Phys Chem Chem Phys 1:13Google Scholar
  225. 225.
    Schultz NE, Staszewska G, Staszewski P, Truhlar DG (2004) . J Phys Chem B 108:4850Google Scholar
  226. 226.
    Drebov N, Ahlrichs R (2010) . J Chem Phys 132:164703PubMedGoogle Scholar
  227. 227.
    Ba Tai T, Grant DJ, Nguyen MT, Dixon DA (2010) . J Phys Chem A 114:994Google Scholar
  228. 228.
    Lau KC, Deshpande M, Pandey R (2005) . Int J Quantum Chem 102:656Google Scholar
  229. 229.
    Lau KC, Deshpande M, Pati R, Pandey R (2005) . Int J Quantum Chem 103:866Google Scholar
  230. 230.
    Upton TH (1986) . Phys Rev Lett 56:2168PubMedGoogle Scholar
  231. 231.
    Chuang FC, Wang CZ, Ho KH (2006) . Phys Rev B 73:125431Google Scholar
  232. 232.
    Aguado A, Lopez JM (2009) . J Chem Phys 130:064704PubMedGoogle Scholar
  233. 233.
    Ouyang Y, Wang P, Xiang P, Chen H, Du Y (2012) . Comput Theor Chem 984:68Google Scholar
  234. 234.
    Boustani I (1997) . Phys Rev B 55:16426Google Scholar
  235. 235.
    Feng XJ, Luo Y (2007) . J Phys Chem A 111:2420PubMedGoogle Scholar
  236. 236.
    Atiş M, Özdogan C, Güvenç ZB (2007) . Int J Quantum Chem 107:729Google Scholar
  237. 237.
    Wang J, Wang G, Zhao J (2002) . Phys Rev B 66:035418Google Scholar
  238. 238.
    Urban M, Blasko M, Cernusak I, Neogrády P, Pitonak M (2018) . Chem Listy (in Czech and Slovak) 112:683Google Scholar
  239. 239.
    Shao J, Zhu X, Lu X, Shi R (2008) . J Mol Struct (Theochem) 855:82Google Scholar
  240. 240.
    Oliveira LFL, Tarrat N, Cuny J, Morillo J, Lemoine D, Spiegelman F, Rapacioli M (2016) . J Phys Chem A 120:8469PubMedGoogle Scholar
  241. 241.
    Chen BL, Sun WG, Kuang XY, Lu C, Xia XX, Shi HX, Maroulis G (2017) . Inorg Chem 57:343PubMedGoogle Scholar
  242. 242.
    Gingerich KA, Finkbeiner H, Schmude RW Jr (1994) . J Am Chem Soc 116:3884Google Scholar
  243. 243.
    Karton A, Tarnopolsky A, Martin JML (2009) . Mol Phys 107:977Google Scholar
  244. 244.
    Chang C, Patzer ABC, Sedlmayr E, Sülzle D. (1998) . Eur Phys J D 2:57Google Scholar
  245. 245.
    Politzer P, Lane P, Grice ME (2001) . J Phys Chem A 105:7473Google Scholar
  246. 246.
    Wu YY, Zhao FQ, Ju XH (2014) . Comput Theor Chem 1027:151Google Scholar
  247. 247.
    Pimenova SM, Melkhanova SV, Kolesov VP (2003) . J Chem Thermodyn 35:189Google Scholar
  248. 248.
    van Setten MJ, Fichtner M (2009) . J Alloys Compd 477:L11Google Scholar
  249. 249.
    Harding LB, Georgievskii Y, Klippenstein SJ (2017) . J Phys Chem A 121:4334PubMedGoogle Scholar
  250. 250.
    Oi T, Popowicz A, Ishida T (1986) . J Phys Chem 90:3080Google Scholar
  251. 251.
    Rahal M, Bouabdallah I, Malek F, Hajbi AE (2015) . Comput Theor Chem 1068:13Google Scholar
  252. 252.
    Császár AG, Furtenbacher T (2015) . J Phys Chem A 119:10229PubMedGoogle Scholar
  253. 253.
    Buzea C, Yamashita T (2001) . Supercond Sci Technol 14:R115Google Scholar
  254. 254.
    Vaglio R, Maglione MG, Di Capua R (2002) . Supercond Sci Tech 15:1236Google Scholar
  255. 255.
    Xiao-Lin Z, Ke L, Xiang-Rong C, Jun Z (2006) . Chinese Phys 15:3014Google Scholar
  256. 256.
    Masago A, Shirai K, Katayama-Yoshida H (2006) . Phys Rev B 73:104102Google Scholar
  257. 257.
    Lide DR (ed) (2010) CRC handbook of chemistry and physics, 90th edn. CRC PressGoogle Scholar
  258. 258.
    Farid B, Godby RW (1991) . Phys Rev B 43:14248Google Scholar
  259. 259.
    Shandiz MA (2008) . J Phys Condens Matter 20:325237Google Scholar
  260. 260.
    Taherkhani F, Akbarzadeh H, Abroshan H, Fortunelli A (2012) . Fluid Phase Equilibr 335:26Google Scholar
  261. 261.
    Savel’ev AM, Starik AM (2017) . Phys Chem Chem Phys 19:523Google Scholar
  262. 262.
    Ngandjong AC, Mezei JZ, Mougenot J, Michau A, Hassouni K, Lombardi G, Seydou M, Maurel F (2017) . Comput Theor Chem 1102:105Google Scholar
  263. 263.
    Loukhovitski BI, Sharipov AS (2019) . Aviation Engines (in Russian) 3(2):23Google Scholar
  264. 264.
    Bykov NY, Gorbachev YE (2015) . High Temp 53:279Google Scholar
  265. 265.
    Milani P, Moullet I, de Heer WA (1990) . Phys Rev A 42:5150–5154.  https://doi.org/10.1103/PhysRevA.42.5150 CrossRefPubMedGoogle Scholar
  266. 266.
    de Heer WA, Milani P, Chatelain A (1989) . Phys Rev Lett 63:2834PubMedGoogle Scholar
  267. 267.
    Fuentealba P (2004) . Chem Phys Lett 397:459Google Scholar
  268. 268.
    Fleig T (2005) . Phys Rev A 72:052506Google Scholar
  269. 269.
    Alipour M, Mohajeri A (2010) . J Phys Chem A 114:12709PubMedGoogle Scholar
  270. 270.
    Pouchan C, Rerat M, Maroulis G (1997) . J Phys B: At Mol Opt Phys 30:167Google Scholar
  271. 271.
    Reis H, Papadopoulos MG (1999) . J Comput Chem 20:679Google Scholar
  272. 272.
    Purcell E (2011) Electricity and magnetism: Berkeley physics course. Cambridge University Press, CambridgeGoogle Scholar
  273. 273.
    Kittel C (1968) Introduction to solid state physics, 3rd edn. Wiley, New YorkGoogle Scholar
  274. 274.
    Lonc WP (1981) . J Less-Common Met 82:149Google Scholar
  275. 275.
    Benichou E, Antoine R, Rayane D, Vezin B, Dalby FW, Dugourd P, Broyer M, Ristori C, Chandezon F, Huber BA, Rocco JC, Blundell SA, Guet C (1999) . Phys Rev A 59:R1.  https://doi.org/10.1103/PhysRevA.59.R1 CrossRefGoogle Scholar
  276. 276.
    Blundell SA, Guet C, Zope RR (2000) . Phys Rev Lett 84:4826PubMedGoogle Scholar
  277. 277.
    Snider DR, Sorbello RS (1983) . Phys Rev B 28:5702Google Scholar
  278. 278.
    Kiejna A, Pogosov VV (1996) . J Phys Condens Matter 8:4245Google Scholar
  279. 279.
    Parasuk V, Neogrády P., Lischka H, Urban M (1996) . J Phys Chem 100:6325Google Scholar
  280. 280.
    Ruud K, Jonsson D, Taylor PR (2001) . J Chem Phys 114:4331Google Scholar
  281. 281.
    Zope RR (2007) . J Phys B: At Mol Opt Phys 40:3491Google Scholar
  282. 282.
    Kumar A, Thakkar AJ (2011) . Chem Phys Lett 516:208Google Scholar
  283. 283.
    Chattaraj PK, Poddar A (1999) . J Phys Chem A 103:1274Google Scholar
  284. 284.
    Hohm U (2000) . J Phys Chem A 104:8418Google Scholar
  285. 285.
    Chattaraj PK, Roy DR, Elango M, Subramanian V (2005) . J Phys Chem A 109:9590PubMedGoogle Scholar
  286. 286.
    Krech RH, McFadden DL (1977) . J Am Chem Soc 99:8402Google Scholar
  287. 287.
    Sabirov DS, Garipova RR, Cataldo F (2018) . Mol Astrophys 12:10Google Scholar
  288. 288.
    Kronik L, Vasiliev I, Chelikowsky JR (2000) . Phys Rev B 62:9992Google Scholar
  289. 289.
    Kummel S, Akola J, Manninen M (2000) . Phys Rev Lett 84:3827PubMedGoogle Scholar
  290. 290.
    Urban M, Sadlej AJ (1990) . Theor Chim Acta 78:189Google Scholar
  291. 291.
    Jonsson D, Norman P, Luo Y, Ågren H (1996) . J Chem Phys 105:581.  https://doi.org/10.1063/1.471911 CrossRefGoogle Scholar
  292. 292.
    Fuentealba P, Simon-Manso Y, Chattaraj PK (2000) . J Phys Chem A 104:3185Google Scholar
  293. 293.
    Paleníková J, Kraus M, Neogrády P, Kellö V, Urban M (2008) . Mol Phys 106:2333Google Scholar
  294. 294.
    Medved’ M., Budzák Š, Pluta T (2015) . Theor Chem Acc 134: 78Google Scholar
  295. 295.
    Galashev AE, Rakhmanova OR (2013) . High Temp 51:97–105Google Scholar
  296. 296.
    Gurentsov EV, Eremin AV, Mikheeva EY, Musikhin SA (2016) . High Temp 54:902Google Scholar
  297. 297.
    Gurentsov EV (2018) . Nanotechnol Rev 7:583Google Scholar
  298. 298.
    Russell AJ, Spackman MA (2000) . Mol Phys 98:867Google Scholar
  299. 299.
    Naves ES, Castro MA, Fonseca TL (2011) . J Chem Phys 134:054315PubMedGoogle Scholar
  300. 300.
    Hohm U (2013) . J Mol Struct 282:1054–1055Google Scholar
  301. 301.
    Eklund PC, Rao AM, Wang Y, Zhou KA, Wang P, Holden JM, Dresselhaus MS, Dresselhaus G (1995) . Thin Solid Films 257:211.  https://doi.org/10.1016/0040-6090(94)05706-0 CrossRefGoogle Scholar
  302. 302.
    Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF, Nandi S, Ellison GB (2002) . Chem Rev 102:231PubMedGoogle Scholar
  303. 303.
    Boustani I (1995) . Chem Phys Lett 240:135Google Scholar
  304. 304.
    Assadollahzadeh B, Schwerdtfeger P (2009) . J Chem Phys 131:064306PubMedGoogle Scholar
  305. 305.
    Rajsky T, Urban M (2016) . J Phys Chem A 120:3938PubMedGoogle Scholar
  306. 306.
    Jahan N, Ali MA (2014) . Bangladesh J Phys 15:93Google Scholar
  307. 307.
    Hill TL (1962) . J Chem Phys 36:3182Google Scholar
  308. 308.
    Calvo F, Doye JPK, Wales DJ (2001) . J Chem Phys 114:7312Google Scholar
  309. 309.
    Berry RS, Smirnov BM (2009) . Phys Usp 52:137Google Scholar
  310. 310.
    Clarke JF, McChesney M (1964) The dynamics of real gases (Atomic and molecular structure effects on dynamic behavior of real gas systems). Butterworths, LondonGoogle Scholar
  311. 311.
    Nayak SK, Khanna SN, Rao BK, Jena P (1998) . J Phys Condens Matter 10:10853Google Scholar
  312. 312.
    Sirenko AN, Belashchenko DK (2012) . Inorg Mater 48:332Google Scholar
  313. 313.
    Gafner SL, Redel LV, Gafner YY (2012) . J Exp Theor Phys 114:428–439Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Central Institute of Aviation MotorsMoscowRussia
  2. 2.Joint Institute for High Temperatures of the Russian Academy of SciencesMoscowRussia

Personalised recommendations