Advertisement

Vacuum ultraviolet absorbance of alkanes: an experimental and theoretical investigation

  • James X. Mao
  • Peter Kroll
  • Kevin A. SchugEmail author
Original Research
  • 18 Downloads

Abstract

The electronic absorption spectra of alkanes are known to be broad and lack discrete band structures. Previous studies have suggested their HOMO-LUMO energy gaps could be used to understand the absorbance edges of these spectra. With the advent of a new benchtop vacuum ultraviolet (VUV) spectroscopic absorption detector, it is now possible to collect VUV absorption spectra (from 120 to 240 nm) for an extended range of structures under an inert gas phase environment more conveniently. The previously reported hypothesis was revisited and its limits were explored using a combination of new extended experimental VUV spectral data and theoretical quantum mechanics calculations. It was pointed out from this study that the first strong excitations of alkanes are not always the HOMO-LUMO transition. As a result, the HOMO-LUMO energy gap of alkanes should not be used directly as a universal and reliable parameter to understand their experimental absorbance edges. VUV spectral data for a larger variety of alkanes structures were reported and the relation between these structures and spectra was discussed.

Keywords

Gas chromatography Time-dependent density functional theory Alkanes Electronic absorption spectroscopy 

Notes

Funding information

The authors acknowledge support from VUV Analytics, Inc. for this research. PK acknowledges partial support from the National Science Foundation (NSF) through awards DMR-1463974 and CMMI-1634448.

Compliance with Ethical Standards

Conflict of interests

KAS is a member of the Scientific Advisory Board for VUV Analytics, Inc.

References

  1. 1.
    Raymonda JW, Simpson WT (1967) J Chem Phys 47(2):430.  https://doi.org/10.1063/1.1711913 CrossRefGoogle Scholar
  2. 2.
    Lombos B, Sauvageau P, Sandorfy C (1967) Chem Phys Lett 1(2):42.  https://doi.org/10.1016/0009-2614(67)80062-9 CrossRefGoogle Scholar
  3. 3.
    Au JW, Cooper G, Burton GR, Olney TN, Brion C (1993) Chem Phys 173(2):209.  https://doi.org/10.1016/0301-0104(93)80142-v CrossRefGoogle Scholar
  4. 4.
    Kameta K, Kouchi N, Ukai M, Hatano Y (2002) J Electron Spectrosc Relat Phenom 123(2-3):225.  https://doi.org/10.1016/s0368-2048(02)00022-1 CrossRefGoogle Scholar
  5. 5.
    Chen F, Wu C (2004) J Quant Spectrosc Radiat Transf 85(2):195.  https://doi.org/10.1016/s0022-4073(03)00225-5 CrossRefGoogle Scholar
  6. 6.
    Costner EA, Long BK, Navar C, Jockusch S, Lei X, Zimmerman P, Campion A, Turro NJ, Willson CG (2009) J Phys Chem A 113(33):9337.  https://doi.org/10.1021/jp903435c CrossRefGoogle Scholar
  7. 7.
    Schug KA, Sawicki I, Carlton DD, Fan H, McNair HM, Nimmo JP, Kroll P, Smuts J, Walsh P, Harrison D (2014) Anal Chem 86(16):8329.  https://doi.org/10.1021/ac5018343. PMID: 25079505CrossRefGoogle Scholar
  8. 8.
    Santos IC, Schug KA (2017) J Sep Sci 40(1):138.  https://doi.org/10.1002/jssc.201601023 CrossRefGoogle Scholar
  9. 9.
    Qiu C, Cochran J, Smuts J, Walsh P, Schug KA (2017) J Chromatogr A 1490:191.  https://doi.org/10.1016/j.chroma.2017.02.031 CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Bai L, Smuts J, Walsh P, Fan H, Hildenbrand Z, Wong D, Wetz D, Schug KA (2015) J Chromatogr A 1388:244.  https://doi.org/10.1016/j.chroma.2015.02.007. https://www.sciencedirect.com/science/article/pii/S0021967315002174 CrossRefGoogle Scholar
  12. 12.
    Fan H, Smuts J, Bai L, Walsh P, Armstrong DW, Schug KA (2016) Food Chem 194:265.  https://doi.org/10.1016/j.foodchem.2015.08.004. https://www.sciencedirect.com/science/article/pii/S0308814615011875
  13. 13.
    Weatherly CA, Zhang Y, Smuts JP, Fan H, Xu C, Schug KA, Lang JC, Armstrong DW (2016) J Agric Food Chem 64(6):1422.  https://doi.org/10.1021/acs.jafc.5b05988. PMID: 26852774CrossRefGoogle Scholar
  14. 14.
    Schenk J, Mao JX, Smuts J, Walsh P, Kroll P, Schug KA (2016) Analytica Chimica Acta0 945:1.  https://doi.org/10.1016/j.aca.2016.09.021. https://www.sciencedirect.com/science/article/pii/S0003267016311059 CrossRefGoogle Scholar
  15. 15.
    Walsh P, Garbalena M, Schug KA (2016) Anal Chem 88(22): 11130.  https://doi.org/10.1021/acs.analchem.6b03226. PMID: 27748112CrossRefGoogle Scholar
  16. 16.
    Weber BM, Walsh P, Harynuk JJ (2016) Anal Chem 88(11):5809.  https://doi.org/10.1021/acs.analchem.6b00383. PMID: 27125997CrossRefGoogle Scholar
  17. 17.
    Gröger T, Gruber B, Harrison D, Saraji-Bozorgzad M, Mthembu M, Sutherland A, Zimmermann R (2016) Anal Chem 88(6):3031.  https://doi.org/10.1021/acs.analchem.5b02472. PMID: 26810390CrossRefGoogle Scholar
  18. 18.
    Skultety L, Frycak P, Qiu C, Smuts J, Shear-Laude L, Lemr K, Mao JX, Kroll P, Schug KA, Szewczak A, Vaught C, Lurie I, Havlicek V (2017) Anal Chim Acta 971:55.  https://doi.org/10.1016/j.aca.2017.03.023 CrossRefGoogle Scholar
  19. 19.
    Qiu C, Smuts J, Schug KA (2017) J Sep Sci 40(4):869.  https://doi.org/10.1002/jssc.201601019 CrossRefGoogle Scholar
  20. 20.
    Skultety L, Frycak P, Qiu C, Smuts J, Shear-Laude L, Lemr K, Mao JX, Kroll P, Schug KA, Szewczak A, Vaught C, Lurie I, Havlicek V (2017) Anal Chim Acta 971:55.  https://doi.org/10.1016/j.aca.2017.03.023 CrossRefGoogle Scholar
  21. 21.
    Anthony IGM, Brantley MR, Gaw CA, Floyd AR, Solouki T (2018) Anal Chem 90(7):4878.  https://doi.org/10.1021/acs.analchem.8b00531 CrossRefGoogle Scholar
  22. 22.
    Liu H, Raffin G, Trutt G, Dugas V, Demesmay C, Randon J (2019) J Chromatogr A 1595:174.  https://doi.org/10.1016/j.chroma.2019.02.033 CrossRefGoogle Scholar
  23. 23.
    Cruse CA, Goodpaster JV (2019) Talanta 195:580.  https://doi.org/10.1016/j.talanta.2018.11.060 CrossRefGoogle Scholar
  24. 24.
    Buchalter S, Marginean I, Yohannan J, Lurie IS (2019) J Chromatogr A 1596:183.  https://doi.org/10.1016/j.chroma.2019.03.011 CrossRefGoogle Scholar
  25. 25.
    García-Cicourel AR, Janssen HG (2019) J Chromatogr A 1590:113.  https://doi.org/10.1016/j.chroma.2019.01.015 CrossRefGoogle Scholar
  26. 26.
    Dunkle MN, Pijcke P, Winniford B, Bellos G (2019) J Chromatogr A 1587:239.  https://doi.org/10.1016/j.chroma.2018.12.026 CrossRefGoogle Scholar
  27. 27.
    Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) J Chem Phys 128(4):044118.  https://doi.org/10.1063/1.2831900 CrossRefGoogle Scholar
  28. 28.
    Guido CA, Cortona P, Mennucci B, Adamo C (2013) J Chem Theory Comput 9(7):3118.  https://doi.org/10.1021/ct400337e CrossRefGoogle Scholar
  29. 29.
    Runge E, Gross EKU (1984) Phys Rev Lett 52:997.  https://doi.org/10.1103/PhysRevLett.52.997 CrossRefGoogle Scholar
  30. 30.
    Becke AD (1993) J Chem Phys 98:5648.  https://doi.org/10.1063/1.464913 CrossRefGoogle Scholar
  31. 31.
    Lee C, Yang W, Parr RG (1988) Phys Rev B: Condens Matter Mater Phys 37:785.  https://doi.org/10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  32. 32.
    Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58(8):1200.  https://doi.org/10.1139/p80-159 CrossRefGoogle Scholar
  33. 33.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98(45):11623.  https://doi.org/10.1021/j100096a001 CrossRefGoogle Scholar
  34. 34.
    Hariharan PC, Pople JA (1973) Theor Chem Accounts 28:213.  https://doi.org/10.1007/BF00533485 CrossRefGoogle Scholar
  35. 35.
    Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77(7):3654.  https://doi.org/10.1063/1.444267 CrossRefGoogle Scholar
  36. 36.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas JB, Foresman JV, Ortiz J, Cioslowski DJ (2009) Fox. Gaussian 09 Revision E.01. Gaussian Inc Wallingford CTGoogle Scholar
  37. 37.
    Tachibana S, Morisawa Y, Ikehata A, Sato H, Higashi N, Ozaki Y (2011) . Appl Spectrosc 65 (2):221.  https://doi.org/10.1366/10-06036 CrossRefGoogle Scholar
  38. 38.
    Morisawa Y, Tachibana S, Ehara M, Ozaki Y (2012) . J Phys Chem A 116(48):11957.  https://doi.org/10.1021/jp307634m. PMID: 23140337CrossRefGoogle Scholar
  39. 39.
    Ozaki Y, Tanabe I (2016) . Analyst 141:3962.  https://doi.org/10.1039/C6AN00522E CrossRefGoogle Scholar
  40. 40.
    Tomasi J, Mennucci B, Cammi R (2005) . Chem Rev 105:2999.  https://doi.org/10.1021/cr9904009 CrossRefGoogle Scholar
  41. 41.
    Silva-Junior MR, Schreiber M, Sauer SPA, Thiel W (2008) . J Chem Phys 129(10):104103.  https://doi.org/10.1063/1.2973541 CrossRefGoogle Scholar
  42. 42.
    Mulliken RS (1935) . J Chem Phys 3(8):517.  https://doi.org/10.1063/1.1749717 CrossRefGoogle Scholar
  43. 43.
    Lu T, Chen F (2011) . J Comput Chem 33(5):580.  https://doi.org/10.1002/jcc.22885 CrossRefGoogle Scholar
  44. 44.
  45. 45.
    Martin RL (2003) . J Chem Phys 118:4775.  https://doi.org/10.1063/1.1558471 CrossRefGoogle Scholar
  46. 46.
    Mustroph H, Ernst S, Senns B, Towns AD (2015) . Color Technol 131(1):9.  https://doi.org/10.1111/cote.12120 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonUSA

Personalised recommendations