Advertisement

Structural Chemistry

, Volume 30, Issue 6, pp 2419–2428 | Cite as

Exploration of H2S capture by alkanolamines

  • Xue Song
  • Yingming Zhang
  • Chuan Wu
  • Xia Sheng
  • Hailiang ZhaoEmail author
Original Research
  • 61 Downloads

Abstract

H2S is a kind of impurity in the alternative energy resource of biogas and landfill gas. Among the removal methods, absorption by alkanolamines is the commonly accepted and widely used ones. This is due to the efficient regeneration. In this study, the absorption mechanism of H2S by two alkanolamines, namely diethanolamine (DEA) and N-methyldiethanolamine (MDEA), was proposed in a different way and analyzed by DFT calculations. The structural, energetic, red shifts and topological analysis of the most stable structures were then investigated. The values of electron densities and Laplacian densities at the bond critical points fall in the range of a hydrogen bond. Two kinds of hydrogen bonds S–H···N and O–H···S formed between H2S and DEA/MDEA are considered to be the driving forces during the absorption process. Thus, it can be known that H2S can act as both a hydrogen bond acceptor and a donor. Besides, the S–H···N hydrogen bond is much stronger than the O–H···S hydrogen bond. According to the change rules of Gibbs energies, the formation of hydrogen bond becomes difficult with increasing temperature and deceasing pressure. The absorption mechanism of H2S captured by alkanolamines via hydrogen bond interaction provides a novel theoretical direction for further study.

Keywords

H2Alkanolamines Hydrogen bond AIM DFT 

Notes

Funding information

This research has been financially supported by the Henan University of Technology under grant number: 2018BS046 and the National Natural Science Foundation of China under grant number: 21607037. We also thank the High Performance Computing Centre of Shandong University for providing Gaussian 09 software package and high-performance computation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Petersson A, Wellinger A (2009) Biogas upgrading technologies–developments and innovations, vol 37. Iea BioenergyGoogle Scholar
  2. 2.
    Lombardi L, Carnevale E (2013) Economic evaluations of an innovative biogas upgrading method with CO2 storage. Energy 62(6):88–94.  https://doi.org/10.1016/j.energy.2013.02.066 CrossRefGoogle Scholar
  3. 3.
    Knaebel KS, Reinhold HE (2003) Landfill gas: from rubbish to resource. Adsorption 9(1):87–94.  https://doi.org/10.1023/A:1023871415711 CrossRefGoogle Scholar
  4. 4.
    Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust 34(6):755–781.  https://doi.org/10.1016/j.pecs.2008.06.002 CrossRefGoogle Scholar
  5. 5.
    Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32(8):1375–1380.  https://doi.org/10.1016/j.energy.2006.10.018 CrossRefGoogle Scholar
  6. 6.
    Yan S, He Q, Zhao S, Wang Y, Ping A (2014) Biogas upgrading by CO2 removal with a highly selective natural amino acid salt in gas–liquid membrane contactor. Chem Eng Process 85:125–135.  https://doi.org/10.1016/j.cep.2014.08.009 CrossRefGoogle Scholar
  7. 7.
    Alonso-Vicario A, Ochoa-Gómez JR, Gil-Río S, Gómez-Jiménez-Aberasturi O, Ramírez-López CA, Torrecilla-Soria J, Domínguez A (2010) Purification and upgrading of biogas by pressure swing adsorption on synthetic and natural zeolites. Microporous Mesoporous Mater 134(1):100–107.  https://doi.org/10.1016/j.micromeso.2010.05.014 CrossRefGoogle Scholar
  8. 8.
    Keshavarz P, Fathikalajahi J, Ayatollahi S (2008) Mathematical modeling of the simultaneous absorption of carbon dioxide and hydrogen sulfide in a hollow fiber membrane contactor. Sep Purif Technol 63(1):145–155.  https://doi.org/10.1016/j.seppur.2008.04.008 CrossRefGoogle Scholar
  9. 9.
    Kasikamphaiboon P, Chungsiriporn J, Bunyakan C, Wiyaratn W (2013) Simultaneous removal of CO2 and H2S using MEA solution in a packed column absorber for biogas upgrading. Songklanakarin J Sci Technol 35(6):683–691.  https://doi.org/10.1016/j.seppur.2011.10.024 CrossRefGoogle Scholar
  10. 10.
    Phooratsamee W, Hussaro K, Teekasap S, Hirunlabh J (2014) Increasing adsorption of activated carbon from palm oil shell for adsorb H2S from biogas production by impregnation. Am J Environ Sci 10(5):431–445.  https://doi.org/10.3844/ajessp.2014.431.445 CrossRefGoogle Scholar
  11. 11.
    Schieder D, Quicker P, Schneider R, Winter H, Prechtl S, Faulstich M (2003) Microbiological removal of hydrogen sulfide from biogas by means of a separate biofilter system: experience with technical operation. Water Sci Technol 48(4):209.  https://doi.org/10.1016/S0043-1354(02)00272-5 CrossRefPubMedGoogle Scholar
  12. 12.
    Bauer F, Persson T, Hulteberg C, Tamm D (2013) Biogas upgrading-technology overview, comparison and perspectives for the future. Biofuels Bioprod Biorefin 7(5):499–511.  https://doi.org/10.1002/bbb.1423 CrossRefGoogle Scholar
  13. 13.
    Yang WY, Liang H, Qiao ZW (2018) High-throughput screening of metal-organic frameworks for the separation of hydrogen sulfide and carbon dioxide from natural gas. Acta Chim Sin 76(10):785–792.  https://doi.org/10.6023/A18070293 CrossRefGoogle Scholar
  14. 14.
    Hedayat M, Soltanieh M, Mousavi SA (2011) Simultaneous separation of H2S and CO2 from natural gas by hollow fiber membrane contactor using mixture of alkanolamines. J Membr Sci 377(1-2):191–197.  https://doi.org/10.1016/j.memsci.2011.04.051 CrossRefGoogle Scholar
  15. 15.
    Chen XY, Vinh-Thang H, Ramirez AA, Rodrigue D, Kaliaguine S (2015) Membrane gas separation technologies for biogas upgrading. RSC Adv 5(31):24399–24448.  https://doi.org/10.1039/c5ra00666j CrossRefGoogle Scholar
  16. 16.
    Jin PR, Huang C, Shen YD, Zhan XY, Hu XY, Wang L, Wang L (2017) Simultaneous separation of H2S and CO2 from biogas by gas liquid membrane contactor using single and mixed absorbents. Energy Fuel 31(10):11117–11126.  https://doi.org/10.1021/acs.energyfuels.7b02114 CrossRefGoogle Scholar
  17. 17.
    Wang D, Teo WK, Li K (2004) Selective removal of trace H2S from gas streams containing CO2 using hollow fibre membrane modules/contractors. Sep Purif Technol 35:125–131.  https://doi.org/10.1016/s1383-5866(03)00135-7 CrossRefGoogle Scholar
  18. 18.
    Molnar E, Rippel-Petho D, Horvath G, Bobek J, Bocsi R, Hodai Z (2017) Study of selective hydrogen sulfide absorption by comparing two different alkali absorbents by using atomization method. Stud Univ Babes Bolyai Chem 62(3):273–282.  https://doi.org/10.24193/subbchem.2017.3.23 CrossRefGoogle Scholar
  19. 19.
    Akhmetshina AI, Petukhov AN, Vorotyntsev AV, Nyuchev AV, Vorotyntsev IV (2017) Absorption behavior of acid gases in protic ionic liquid/alkanolamine binary mixtures. ACS Sustain Chem Eng 5(4):3429–3437.  https://doi.org/10.1021/acssuschemeng.7b00092 CrossRefGoogle Scholar
  20. 20.
    Shokouhi M, Adibi M, Jalili AH, Hosseini-Jenab M, Mehdizadeh A (2010) Solubility and diffusion of H2S and CO2 in the ionic liquid 1-(2-Hydroxyethyl)-3-methylimidazolium tetrafluoroborate. J Chem Eng Data 55(4):1663–1668.  https://doi.org/10.1021/je900716q CrossRefGoogle Scholar
  21. 21.
    Shokouhi M, Farahani H, Hosseini-Jenab M, Jalili AH (2015) Solubility of hydrogen sulfide in N-methylacetamide and N,N-dimethylacetamide: experimental measurement and modeling. J Chem Eng Data 60(3):499–508.  https://doi.org/10.1021/je500478t CrossRefGoogle Scholar
  22. 22.
    Mandal BP, Guha M, Biswas AK, Bandyopadhyay SS (2001) Removal of carbon dioxide by absorption in mixed amines: modelling of absorption in aqueous MDEA/MEA and AMP/MEA solutions. Chem Eng Sci 56(21):6217–6224.  https://doi.org/10.1016/S0009-2509(01)00279-2 CrossRefGoogle Scholar
  23. 23.
    Lepaumier H, Silva EFD, Einbu A, Grimstvedt A, Knudsen JN, Zahlsen K, Svendsen HF (2011) Comparison of MEA degradation in pilot-scale with lab-scale experiments. Energy Procedia 4(1):1652–1659.  https://doi.org/10.1016/j.egypro.2011.02.037 CrossRefGoogle Scholar
  24. 24.
    Jie Y, Yu X, Yan J, Tu ST (2014) CO2 capture using amine solution mixed with ionic liquid. Ind Eng Chem Res 53(7):2790–2799.  https://doi.org/10.1021/ie4040658 CrossRefGoogle Scholar
  25. 25.
    Mandal BP, Bandyopadhyay SS (2006) Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-1-propanol and monoethanolamine. Chem Eng Sci 61(16):5440–5447.  https://doi.org/10.1016/j.ces.2006.04.002 CrossRefGoogle Scholar
  26. 26.
    Moioli S, Giuffrida A, Romano MC, Pellegrini LA, Lozza G (2016) Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants. Appl Energy 183:1452–1470.  https://doi.org/10.1016/j.apenergy.2016.08.155 CrossRefGoogle Scholar
  27. 27.
    Mandal BP, Biswas AK, Bandyopadhyay SS (2004) Selective absorption of H2S from gas streams containing H2S and CO2 into aqueous solutions of N-methyldiethanolamine and 2-amino-2-methyl-1-propanol. Sep Purif Technol 35(3):191–202.  https://doi.org/10.1016/S1383-5866(03)00139-4 CrossRefGoogle Scholar
  28. 28.
    Shokouhi M, Bozorgzade H, Sattari P (2015) Solubility of hydrogen sulfide in aqueous blends of 2-Amino-2-methyl-1-propanol and N-methyldiethanoleamine: experimental measurement and modeling. J Chem Eng Data 60(7):2119–2127.  https://doi.org/10.1021/acs.jced.5b00194 CrossRefGoogle Scholar
  29. 29.
    Al-Rashed OA, Ali SH (2012) Modeling the solubility of CO2 and H2S in DEA-MDEA alkanolamine solutions using the electrolyte-UNIQUAC model. Sep Purif Technol 94:71–83.  https://doi.org/10.1016/j.seppur.2012.04.007 CrossRefGoogle Scholar
  30. 30.
    Handy H, Santoso A, Widodo A, Palgunadi J, Soerawidjaja TH, Indarto A (2014) H2S–CO2 separation using room temperature ionic liquid [BMIM][Br]. Sep Sci Technol 49(13):2079–2084.  https://doi.org/10.1080/01496395.2014.908919 CrossRefGoogle Scholar
  31. 31.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision E.01. Gaussian, Inc, WallingfordGoogle Scholar
  32. 32.
    Chen DC, Zhang XX, Tang J, Fang JN, Li Y, Liu HJ (2018) Adsorption and dissociation mechanism of SO2 and H2S on Pt decorated graphene: a DFT-D3 study. Appl Phys A Mater 124(6).  https://doi.org/10.1007/S00339-018-1827-7
  33. 33.
    Zhou XM, Cao BB, Liu SY, Sun XJ, Zhu X, Fu H (2016) Theoretical and experimental investigation on the capture of H2S in a series of ionic liquids. J Mol Graph Model 68:87–94.  https://doi.org/10.1016/j.jmgm.2016.06.013 CrossRefPubMedGoogle Scholar
  34. 34.
    Manojai N, Daengngern R, Kerdpol K, Kungwan N, Ngaojampa C (2017) TD-DFT Study of absorption and emission spectra of 2-(2’-aminophenyl) benzothiazole derivatives in water. J Fluoresc 27(2):745–754.  https://doi.org/10.1007/s10895-016-2007-9 CrossRefPubMedGoogle Scholar
  35. 35.
    Cheng S, Tang S, Tsona NT, Du L (2017) The influence of the position of the double bond and ring size on the stability of hydrogen bonded complexes. Sci Rep 7(1):11310.  https://doi.org/10.1038/s41598-017-11921-7 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhang Q, Lin D (2016) Hydrogen bonding in the carboxylic acid–aldehyde complexes. Comput Theor Chem 1078:123–128.  https://doi.org/10.1016/j.comptc.2016.01.007 CrossRefGoogle Scholar
  37. 37.
    Li S, Kjaergaard HG, Du L (2016) Infrared spectroscopic probing of dimethylamine clusters in an Ar matrix. J Environ Sci China 40(2):51–59.  https://doi.org/10.1016/j.jes.2015.09.012 CrossRefPubMedGoogle Scholar
  38. 38.
    Zhao H, Zhang Q, Du L (2016) Hydrogen bonding in cyclic complexes of carboxylic acid–sulfuric acid and their atmospheric implications. RSC Adv 6(75):71733–71743.  https://doi.org/10.1039/c6ra16782a CrossRefGoogle Scholar
  39. 39.
    Hansen AS, Lin D, Kjaergaard HG (2014) The effect of fluorine substitution in alcohol-amine complexes. Phys Chem Chem Phys 16(41):22882–22891.  https://doi.org/10.1039/c4cp02500h CrossRefPubMedGoogle Scholar
  40. 40.
    Hansen AS, Lin D, Kjaergaard HG (2014) Positively charged phosphorus as a hydrogen bond acceptor. J Phys Chem Lett 5(23):4225–4231.  https://doi.org/10.1021/jz502150d CrossRefGoogle Scholar
  41. 41.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(553):553–566.  https://doi.org/10.1080/00268970110088901 CrossRefGoogle Scholar
  42. 42.
    Parthasarathi R, Subramanian V, Sathyamurthy N (2006) Hydrogen bonding without borders: an atoms-in-molecules perspective. J Phys Chem A 110(10):3349–3351.  https://doi.org/10.1021/jp060571z CrossRefPubMedGoogle Scholar
  43. 43.
    Lane JR, Contreras-García J, Piquemal JP, Miller BJ, Kjaergaard HG (2013) Are bond critical points really critical for hydrogen bonding. J Chem Theory Comput 9(8):3263–3266.  https://doi.org/10.1021/ct400420r CrossRefPubMedGoogle Scholar
  44. 44.
    Zhao H, Tang S, Li S, Ding L, Du L (2016) Theoretical investigation of the hydrogen bond interactions of methanol and dimethylamine with hydrazone and its derivatives. Struct Chem 27(4):1241–1253.  https://doi.org/10.1007/s11224-016-0749-2 CrossRefGoogle Scholar
  45. 45.
    Jiang X, Tsona NT, Tang S, Du L (2018) Hydrogen bond docking preference in furans: O-H···π vs. O-H···O. Spectrochim Acta A 191:155–164.  https://doi.org/10.1016/j.saa.2017.10.006 CrossRefGoogle Scholar
  46. 46.
    Du L, Tang S, Hansen AS, Frandsen BN, Maroun Z, Kjaergaard HG (2017) Subtle differences in the hydrogen bonding of alcohol to divalent oxygen and sulfur. Chem Phys Lett 667:146–153.  https://doi.org/10.1016/j.cplett.2016.11.045 CrossRefGoogle Scholar
  47. 47.
    Jiang X, Liu S, Narcisse T, Tang S, Ding L, Zhao H, Du L (2017) Matrix isolation FTIR study of hydrogen-bonded complexes of methanol with heterocyclic organic compounds. RSC Adv 7:2503–2512.  https://doi.org/10.1039/C6RA26076D CrossRefGoogle Scholar
  48. 48.
    Curtiss LA, Blander M (1988) Thermodynamic properties of gas-phase hydrogen-bonded complexes. Chem Rev 88(6):827–841.  https://doi.org/10.1021/cr00088a002 CrossRefGoogle Scholar
  49. 49.
    Singh VK, Anil Kumar E (2016) Measurement and analysis of adsorption isotherms of CO2 on activated carbon. Appl Therm Eng 97:77–86.  https://doi.org/10.1016/j.applthermaleng.2015.10.052 CrossRefGoogle Scholar
  50. 50.
    Belmabkhout Y, Sayari A (2009) Effect of pore expansion and amine functionalization of mesoporous silica on CO2 adsorption over a wide range of conditions. Adsorption 15(3):318–328.  https://doi.org/10.1007/s10450-009-9185-6 CrossRefGoogle Scholar
  51. 51.
    Xuan Z, Yi H, Tang X, Hua D, Liu H (2012) Thermodynamics for the adsorption of SO2, NO and CO2 from flue gas on activated carbon fiber. Chem Eng J 200-202(16):399–404.  https://doi.org/10.1016/j.cej.2012.06.013 CrossRefGoogle Scholar
  52. 52.
    Sheng X, Zhao H, Du L (2017) Molecular understanding of the interaction of methyl hydrogen sulfate with ammonia/dimethylamine/water. Chemosphere 186:331–340.  https://doi.org/10.1016/j.chemosphere.2017.08.008 CrossRefPubMedGoogle Scholar
  53. 53.
    Song X, Wang LA, Ma X, Zeng Y (2017) Adsorption equilibrium and thermodynamics of CO2 and CH4 on carbon molecular sieves. Appl Surf Sci 396:870–878.  https://doi.org/10.1016/j.apsusc.2016.11.050 CrossRefGoogle Scholar
  54. 54.
    Duan S, Gu M, Du XD, Xian XF (2016) Adsorption equilibrium of CO2 and CH4 and their mixture on Sichuan basin shale. Energy Fuel 30(3):2248–2256.  https://doi.org/10.1021/acs.energyfuels.5b02088 CrossRefGoogle Scholar
  55. 55.
    Albaghli NA, Pruess SA, Yesavage VF, Selim MS (2001) A rate-based model for the design of gas absorbers for the removal of CO2 and H2S using aqueous solutions of MEA and DEA. Fluid Phase Equilib 185(1):31–43.  https://doi.org/10.1016/S0378-3812(01)00454-X CrossRefGoogle Scholar
  56. 56.
    Rongwong W, Boributh S, Assabumrungrat S, Laosiripojana N, Jiraratananon R (2012) Simultaneous absorption of CO2 and H2S from biogas by capillary membrane contactor. J Membr Sci 392(2):38–47.  https://doi.org/10.1016/j.memsci.2011.11.050 CrossRefGoogle Scholar
  57. 57.
    Zhang TM (2017) Whether the spontaneity of reversible reaction can be judged by its gibbs free energy change. Chin J Chem Educ 38(9):63–65.  https://doi.org/10.13884/j.1003-3807hxjy.2016070080 CrossRefGoogle Scholar
  58. 58.
    Chiappe C, Pomelli CS (2017) Hydrogen sulfide and ionic liquids: absorption, separation, and oxidation. Top Curr Chem 375(3):52.  https://doi.org/10.1007/s41061-017-0140-9 CrossRefGoogle Scholar
  59. 59.
    Zhao H, Tang S, Zhang Q, Du L (2017) Weak hydrogen bonding competition between O-H···π and O-H···Cl. RSC Adv 7(36):22485–22491.  https://doi.org/10.1039/c7ra00901a CrossRefGoogle Scholar
  60. 60.
    Zhang Q, Du L (2016) Hydrogen bonding in the carboxylic acid–aldehyde complexes. Comput Theor Chem 1078:123–128.  https://doi.org/10.1016/j.comptc.2016.01.007 CrossRefGoogle Scholar
  61. 61.
    Du L, Kjaergaard HG (2011) Fourier transform infrared spectroscopy and theoretical study of dimethylamine dimer in the gas phase. J Phys Chem A 115(44):12097–12104.  https://doi.org/10.1021/jp206762j CrossRefPubMedGoogle Scholar
  62. 62.
    Zoghi AT, Shokouhi M (2016) Measuring solubility of hydrogen sulphide in aqueous blends of N-methyldiethanolamine and 2-((2 aminoethyl)amino)ethanol and correlating by the Deshmukh-Mather model. J Chem Thermodyn 100:106–115.  https://doi.org/10.1016/j.jct.2016.04.012 CrossRefGoogle Scholar
  63. 63.
    Damas GB, Dias ABA, Costa LT (2014) A quantum chemistry study for ionic liquids applied to gas capture and separation. J Phys Chem B 118(30):9046.  https://doi.org/10.1021/jp503293j CrossRefPubMedGoogle Scholar
  64. 64.
    Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Phys Chem 99(24):9747–9754.  https://doi.org/10.1021/j100024a016 CrossRefGoogle Scholar
  65. 65.
    Grabowski SJ (2004) Hydrogen bonding strength-measures based on geometric and topological parameters. J Phys Org Chem 17(1):18–31.  https://doi.org/10.1002/poc.685 CrossRefGoogle Scholar
  66. 66.
    Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102(10):1873–1878.  https://doi.org/10.1021/jp9805048 CrossRefGoogle Scholar
  67. 67.
    Zhao H, Tang S, Xu X, Du L (2016) Hydrogen bonding interaction between atmospheric gaseous amides and methanol. Int J Mol Sci 18(1):4.  https://doi.org/10.3390/ijms18010004 CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry, Chemical and Environmental EngineeringHenan University of TechnologyZhengzhouChina
  2. 2.State Grid Henan Electric Power Research InstituteZhengzhouChina

Personalised recommendations