Advertisement

Structural Chemistry

, Volume 30, Issue 6, pp 2447–2457 | Cite as

Water-induced isomerism of salicylaldehyde and 2-acetylpyridine mono- and bis-(thiocarbohydrazones) improves the antioxidant activity: spectroscopic and DFT study

  • Mohamed H. Assaleh
  • Aleksandra R. Božić
  • Snežana Bjelogrlić
  • Milena Milošević
  • Milena Simić
  • Aleksandar D. Marinković
  • Ilija N. CvijetićEmail author
Original Research
  • 84 Downloads

Abstract

Thiocarbohydrazones (TCHs) and structurally related molecules are versatile organic compounds which exert antioxidant, anticancer, and other beneficial health effects. The combination of UV/Vis, NMR spectroscopy, and quantum chemical calculations was used to rationalize the experimentally observed increase in the radical scavenging activity upon the addition of water in DMSO solution of TCHs. Mono- and bis(salicylaldehyde) TCHs (compounds 1 and 2) undergo water-induced E-to-Z isomerization which is followed by disruption of intramolecular hydrogen bond, ground state destabilization, and 11 kcal/mol decrease in the bond dissociation enthalpy (BDE). Electron spin delocalization is more pronounced in Z-isomers of 1 and 2. On the other hand, 2-acetylpyridine TCHs (compounds 3 and 4) undergo thione-to-thiol tautomerism which also decreases the BDE and facilitates the hydrogen atom transfer to 2,2-diphenyl-1-picrylhydrazyl radical (DPPH). The appearance of thiolic –SH group as another reactive site toward free radicals improves the antioxidant activity of 3 and 4. The spin density of 3- and 4-thiol radicals is delocalized over the entire thiocarbohydrazide moiety compared to more localized spin of thione radicals. Additional stabilization of thiol radicals corroborates with the increased antioxidant activity. This study provides the new insights on the solution structure of TCHs, and also highlights the importance of solution structure determination when studying the structure-antioxidant relationships of isomerizable compounds.

Keywords

Thiocarbohydrazones E/Z isomerism Tautomerism Antioxidant activity Bond dissociation enthalpy Spin density distribution 

Notes

Funding information

The Ministry of Education, Science and Technological Development of the Republic of Serbia supported this work, Grant Nos. 172013, 172035, and 172055, and represents the part of the bilateral project between Serbia and Montenegro titled “Synthesis of Schiff bases and investigation of their antimicrobial and antioxidant activity.”

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1371_MOESM1_ESM.docx (3.4 mb)
ESM 1 (DOCX 3462 kb)

References

  1. 1.
    Kaya Y, Erçağ A, Kaya K (2018). J Coord Chem 71:3364–3380Google Scholar
  2. 2.
    Božić AR, Bjelogrlić SK, Novaković IT, Filipović NR, Petrović PM, Marinković AD, Todorović TR, Cvijetić IN (2018). ChemistrySelect 3:2215–2221Google Scholar
  3. 3.
    Hameed A, al-Rashida M, Uroos M, Abid Ali S, Khan KM (2017). Expert Opin Ther Pat 27:63–79PubMedGoogle Scholar
  4. 4.
    Whitnall M, Howard J, Ponka P, Richardson DR (2006). Proc Natl Acad Sci U S A 103:14901–14906PubMedPubMedCentralGoogle Scholar
  5. 5.
    Richardson DR, Kalinowski DS, Richardson V, Sharpe PC, Lovejoy DB, Islam M, Bernhardt PV (2009). J Med Chem 52:1459–1470PubMedGoogle Scholar
  6. 6.
    Nutting CM, van Herpen CML, Miah AB, Bhide SA, Machiels J-P, Buter J, Kelly C, de Raucourt D, Harrington KJ (2009). Ann Oncol 20:1275–1279PubMedGoogle Scholar
  7. 7.
    Božić A, Marinković A, Bjelogrlić S, Todorović TR, Cvijetić IN, Novaković I, Muller CD, Filipović NR (2016). RSC Adv 6:104763–104781Google Scholar
  8. 8.
    Bavin EM, Rees RJW, Robson JM, Seiler M, Seymour DE, Suddaby D (1950) The tuberculostatic activity of some thiosemicarbazones. J Pharm Pharmacol 2:764–772PubMedGoogle Scholar
  9. 9.
    Pirrung MC, Pansare SV, Das SK, Keith KA, Kern ER (2005). J Med Chem 48:3045–3050PubMedGoogle Scholar
  10. 10.
    Abu El-Reash GM, El-Gammal OA, Radwan AH (2014). Spectrochim Acta A Mol Biomol Spectrosc 121:259–267PubMedGoogle Scholar
  11. 11.
    Dragancea D, Shova S, Enyedy ÉA, Breza M, Rapta P, Carrella LM, Rentschler E, Dobrov A, Arion VB (2014). Polyhedron 80:180–192Google Scholar
  12. 12.
    Tiwari ADD, Mishra AKK, Mishra SBB, Mamba BBB, Maji B, Bhattacharya S (2011). Spectrochim Acta A Mol Biomol Spectrosc 79:1050–1056PubMedGoogle Scholar
  13. 13.
    Bozic A, Filipovic N, Novakovic I, Bjelogrlic S, Nikolic J, Drmanic S, Marinkovic A (2017). J Serb Chem Soc 82:495–508Google Scholar
  14. 14.
    Božić AR, Filipović NR, Verbić T, Milčić MK, Todorović TR, Cvijetić IN, Klisurić OR, Radišić MM, Marinković AD (2017). Arab J Chem.  https://doi.org/10.1016/j.arabjc.2017.08.010
  15. 15.
    Gordillo MA, Soto-Monsalve M, Carmona-Vargas CC, Gutiérrez G, D’vries RF, Lehn J-M, Chaur MN (2017). Chem Eur J 23:14872–14882PubMedGoogle Scholar
  16. 16.
    Bacchi A, Carcelli M, Pelagatti P, Pelizzi C, Pelizzi G, Zani F (1999). J Inorg Biochem 75:123–133PubMedGoogle Scholar
  17. 17.
    Al-Omair MA, Sayed AR, Youssef MM (2015). Molecules 20:2591–2610PubMedPubMedCentralGoogle Scholar
  18. 18.
    Shi Z, Zhao Z, Liu M, Wang X (2013). CR Chim 16:977–984Google Scholar
  19. 19.
    Bacchi A, Bonini A, Carcelli M, Ferraro F, Leporati E, Pelizzi C, Pelizzi G (1996) J Chem Soc Dalton Trans 2699–2704Google Scholar
  20. 20.
    Nasr T, Bondock S, Eid S (2014). Eur J Med Chem 84:491–504PubMedGoogle Scholar
  21. 21.
    Peerannawar S, Horton W, Kokel A, Török F, Török M, Török B (2017). Struct Chem 28:391–402Google Scholar
  22. 22.
    Lashin VV, Terent’ev PB, Zelenin KN, Bulakhov GA, Alekseev VV (1994). Chem Heterocycl Compd 30:498–500Google Scholar
  23. 23.
    Cordier C, Vauthier E, Adenier A, Lu Y, Massat A, Cossé-Barbi A (2004). Struct Chem 15:295–307Google Scholar
  24. 24.
    Maity D, Manna AK, Karthigeyan D, Kundu TK, Pati SK, Govindaraju T (2011). Chem Eur J 17:11152–11161PubMedGoogle Scholar
  25. 25.
    Ebrahim Tehrani KHM, Kobarfard F, Azerang P, Mehravar M, Soleimani Z, Ghavami G, Sardari S (2013). Iran J Pharm Res 12:331–346Google Scholar
  26. 26.
    Prior RL, Wu X, Schaich K (2005). J Agric Food Chem 53:4290–4302PubMedPubMedCentralGoogle Scholar
  27. 27.
    Galić N, Dijanošić A, Kontrec D, Miljanić S (2012). Spectrochim Acta A Mol Biomol Spectrosc 95:347–353PubMedGoogle Scholar
  28. 28.
    Halgren TA (1999). J Comput Chem 20:720–729Google Scholar
  29. 29.
    Harrison RW (1993). J Comput Chem 14:1112–1122Google Scholar
  30. 30.
    Pedretti A, Villa L, Vistoli G (2004). J Comput Aided Mol Des 18:167–173PubMedGoogle Scholar
  31. 31.
    Yanai T, Tew DP, Handy NC (2004). Chem Phys Lett 393:51–57Google Scholar
  32. 32.
    Wolinski K, Hinton JF, Pulay P (1990). J Am Chem Soc 112:8251–8260Google Scholar
  33. 33.
    Chai J-D, Head-Gordon M (2008). Phys Chem Chem Phys 10:6615–6620PubMedGoogle Scholar
  34. 34.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revis. B.01. Gaussian, Inc., WallingfordGoogle Scholar
  35. 35.
    Cheah IK, Halliwell B (2012) Ergothioneine; antioxidant potential, physiological function and role in disease. BBA–Mol Basis Dis 1822:784–793Google Scholar
  36. 36.
    Zimmerman MT, Bayse CA, Ramoutar RR, Brumaghim JL (2015). J Inorg Biochem 145:30–40PubMedGoogle Scholar
  37. 37.
    Calcatierra V, López Ó, Fernández-Bolaños JG, Plata GB, Padrón JM (2015). Eur J Med Chem 94:63–72PubMedGoogle Scholar
  38. 38.
    Kovaříková P, Vávrová K, Tomalová K, Schöngut M, Hrušková K, Hašková P, Klimeš J (2008). J Pharm Biomed Anal 48:295–302PubMedGoogle Scholar
  39. 39.
    Milletti F, Vulpetti A (2010). J Chem Inf Model 50:1062–1074PubMedGoogle Scholar
  40. 40.
    Fabian WMF, Antonov L, Nedeltcheva D, Kamounah FS, Taylor PJ (2004). J Phys Chem A 108:7603–7612Google Scholar
  41. 41.
    Kuodis Z, Rutavičius A, Matijoška A, Eicher-Lorka O (2007). Cent Eur J Chem 5:996–1006Google Scholar
  42. 42.
    Lin L, Fan W, Chen S, Ma J, Hu W, Lin Y, Zhang H, Huang R (2012). New J Chem 36:2562–2567Google Scholar
  43. 43.
    Uchiyama S, Ando M, Aoyagi S (2003). J Chromatogr A 996:95–102PubMedGoogle Scholar
  44. 44.
    Galić N, Cimerman Z, Tomišić V (2008). Spectrochim Acta A Mol Biomol Spectrosc 71:1274–1280PubMedGoogle Scholar
  45. 45.
    The 1H NMR spectrum of 1H-1,2,4-triazole-3-thiol; https://sdbs.db.aist.go.jp, SDBS No. 22953, Accessed 18 March 2019
  46. 46.
    Gagliardi L, Garavelli M, Orlandi G, Cembran A, Bernardi F (2004). J Am Chem Soc 126:3234–3243PubMedGoogle Scholar
  47. 47.
    Cimiraglia R, Hofmann HJ (1994). Chem Phys Lett 217:430–435Google Scholar
  48. 48.
    Hernández-García L, Sandoval-Lira J, Rosete-Luna S, Niño-Medina G, Sanchez M (2018). Struct Chem 29:1265–1272Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  2. 2.National Cancer Research Center of SerbiaBelgradeSerbia
  3. 3.SI Institute of Chemistry, Technology and Metallurgy, National Institute, Department of Ecology and TechoeconomicUniversity of BelgradeBelgradeSerbia
  4. 4.Faculty of PharmacyUniversity of BelgradeBelgradeSerbia
  5. 5.Innovation Center of the Faculty of ChemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations