Advertisement

Structural Chemistry

, Volume 30, Issue 6, pp 2369–2377 | Cite as

Theoretical calculations of a porous coordination polymer formed by isonicotinylhydrazine, 1,4-benzenedicarboxylic and Co2+: electronic properties, lithium doping, and H2 adsorption studies

  • Filipe Barra De AlmeidaEmail author
  • Heitor Avelino De Abreu
  • Renata Diniz
Original Research
  • 35 Downloads

Abstract

The present work is focused in the theoretical study of a porous coordination polymer formed by isonicotinylhydrazine (INH), 1,4-benzenedicarboxylic (14BDC) acid, and Co2+. This coordination polymer [Co{CP}] was studied by density of states and charge density difference, which allowed determining its electronic properties, transitions of valence to conduction band and its post-synthesis capacity. We have also evaluated the possibility of inserting lithium into the structure and observed that the resulting structure is stable and energetically favorable. Furthermore, taking into account gas adsorption applications, the insertion of a H2 was also conducted in both [Co{CP}] and lithium-doped structure. Our results have showed that the adsorption of hydrogen in Co{CP} is energetically unfavorable, while in the lithium-doped structure, it showed remarkable potential. Overall, we were able to show in this work after thorough calculation that the insertion of lithium ions into the coordination polymer structure is highly beneficial, improving drastically its hydrogen adsorption ability, which opens a wide window of opportunities towards the development of new coordination polymers for gas adsorption.

Keywords

Coordination polymer Theoretical study Gas adsorption Lithium doping 

Notes

Funding information

The authors thank the Brazilian agency CAPES, CNPq (project number 474173/2013-5) and FAPEMIG for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1367_MOESM1_ESM.docx (2.3 mb)
ESM 1 (DOCX 2316 kb)

References

  1. 1.
    Batten SR, Champness NR, Chen XM, Garcia-Martinez J, Kitagawa S, Ohrstrom L, O'Keeffe M, Suh MP, Reedijk J (2013) Terminology of metal-organic frameworks and coordination polymers (IUPAC recommendations 2013). Pure Appl Chem 85(8):1715–1724.  https://doi.org/10.1351/pac-rec-12-11-20 CrossRefGoogle Scholar
  2. 2.
    Steed JW, Atwood JL (2009) Supramolecular chemistry2nd edn. John Wiley and Son Ltd, West SussexCrossRefGoogle Scholar
  3. 3.
    Millward AR, Yaghi OM (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127(51):17998–17999.  https://doi.org/10.1021/ja0570032 CrossRefPubMedGoogle Scholar
  4. 4.
    Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K (2000) A homochiralmetal-organic porous material for enantioselective separation and catalysis. Nature 404CrossRefGoogle Scholar
  5. 5.
    Matsuda R, Kitaura R, Kitagawa S, Kubota Y, Belosludov RV, Kobayashi TC, Sakamoto H, Chiba T, Takata M, Kawazoe Y, Mita Y (2005) Highly controlled acetylene accommodation in a metal-organic microporous material. Nature 436(7048):238–241.  https://doi.org/10.1038/nature03852 CrossRefGoogle Scholar
  6. 6.
    Chen F, Wang Y, Bai D, He M, Gao X, He Y (2018) Selective adsorption of C2H2 and CO2 from CH4 in an isoreticular series of MOFs constructed from unsymmetrical diisophthalate linkers and the effect of alkoxy group functionalization on gas adsorption. J Mater Chem A 6(8):3471–3478.  https://doi.org/10.1039/c7ta10123f CrossRefGoogle Scholar
  7. 7.
    Sun CY, Qin C, Wang CG, Su ZM, Wang S, Wang XL, Yang GS, Shao KZ, Lan YQ, Wang EB (2011) Chiral nanoporous metal-organic frameworks with high porosity as materials for drug delivery. Adv Mater 23(47):5629.  https://doi.org/10.1002/adma.201102538 CrossRefPubMedGoogle Scholar
  8. 8.
    Combelles C, Ben Yahia M, Pedesseau L, Doublet ML (2011) FeII/FeIII mixed-valence state induced by Li-insertion into the metal-organic-framework Mil53(Fe): a DFT+U study. J Power Sources 196(7):3426–3432.  https://doi.org/10.1016/j.jpowsour.2010.08.065 CrossRefGoogle Scholar
  9. 9.
    Maark TA, Pal S (2010) A model study of effect of M = Li+, Na+, Be2+, Mg2+, and Al3+ ion decoration on hydrogen adsorption of metal-organic framework-5. Int J Hydrog Energy 35(23):12846–12857.  https://doi.org/10.1016/j.ijhydene.2010.08.054 CrossRefGoogle Scholar
  10. 10.
    Dalach P, Frost H, Snurr RQ, Ellis DE (2008) Enhanced hydrogen uptake and the electronic structure of lithium-doped metal−organic frameworks. J Phys Chem C 112(25):9278–9284.  https://doi.org/10.1021/jp801008d CrossRefGoogle Scholar
  11. 11.
    Kolmann SJ, Chan B, Jordan MJT (2008) Modelling the interaction of molecular hydrogen with lithium-doped hydrogen storage materials. Chem Phys Lett 467(1–3):126–130.  https://doi.org/10.1016/j.cplett.2008.10.081 CrossRefGoogle Scholar
  12. 12.
    Rao D, Lu R, Xiao C, Kan E, Deng K (2011) Lithium-doped MOF impregnated with lithium-coated fullerenes: a hydrogen storage route for high gravimetric and volumetric uptakes at ambient temperatures. Chem Commun 47(27):7698–7700.  https://doi.org/10.1039/c1cc11832c CrossRefGoogle Scholar
  13. 13.
    Morozan A, Jaouen F (2012) Metal organic frameworks for electrochemical applications. Energy Environ Sci 5(11):9269–9290.  https://doi.org/10.1039/c2ee22989g CrossRefGoogle Scholar
  14. 14.
    Jiang ZJ, Zhao PS, Li RQ, An LT, Zhang ZC, Xu J (2013) Two distinct Cu(I) coordination polymers based on isoniazid and different bridged groups. J Chem Crystallogr 43(9):463–470.  https://doi.org/10.1007/s10870-013-0442-x CrossRefGoogle Scholar
  15. 15.
    Xue H, Na Z, Wu Y, Wang X, Li Q, Liang F, Yin D, Wang L, Ming J (2018) Unique Co3O4/nitrogen-doped carbon nanospheres derived from metal–organic framework: insight into their superior lithium storage capabilities and electrochemical features in high-voltage batteries. J Mater Chem A 6(26):12466–12474.  https://doi.org/10.1039/c8ta03959c CrossRefGoogle Scholar
  16. 16.
    de Almeida FB, e Silva FH, Yoshida MI, de Abreu HA, Diniz R (2013) An interpenetrated 2D coordination polymer: a candidate for gas adsorption of small molecules. Inorg Chim Acta 402:60–68.  https://doi.org/10.1016/j.ica.2013.03.038 CrossRefGoogle Scholar
  17. 17.
    Sheldrick G (2008) A short history of SHELX. Acta Crystallogr Sect A 64(1):112–122.  https://doi.org/10.1107/S0108767307043930 CrossRefGoogle Scholar
  18. 18.
    Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van De Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457.  https://doi.org/10.1107/s002188980600731x CrossRefGoogle Scholar
  19. 19.
    Barnes CL (1997) ORTEP-3 for Windows - a version of ORTEP-III with a graphical user interface (GUI). J Appl Crystallogr 30(1):568–568.  https://doi.org/10.1107/s0021889897006638 CrossRefGoogle Scholar
  20. 20.
    Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23(10):5048–5079.  https://doi.org/10.1103/PhysRevB.23.5048 CrossRefGoogle Scholar
  21. 21.
    Baroni S, dalCorso A, deGironcoli S, Giannozzi P, Cavazzoni C (2018) http://www.democritos.it. 2018
  22. 22.
    Laasonen K, Pasquarello A, Car R, Lee C, Vanderbilt D (1993) Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys Rev B 47(16):10142–10153.  https://doi.org/10.1103/PhysRevB.47.10142 CrossRefGoogle Scholar
  23. 23.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136(3B):B864.  https://doi.org/10.1103/PhysRev.136.B864 CrossRefGoogle Scholar
  24. 24.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):1133CrossRefGoogle Scholar
  25. 25.
    Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64(4):1045–1097.  https://doi.org/10.1103/RevModPhys.64.1045 CrossRefGoogle Scholar
  26. 26.
    Mehio N, Dai S, Jiang D-e (2014) Quantum mechanical basis for kinetic diameters of small gaseous molecules. J Phys Chem A 118(6):1150–1154.  https://doi.org/10.1021/jp412588f CrossRefGoogle Scholar
  27. 27.
    Isaeva VI, Kustov LM (2007) Metal-organic frameworks—new materials for hydrogen storage. Russ J Gen Chem 77(4):721–739.  https://doi.org/10.1134/s1070363207040342 CrossRefGoogle Scholar
  28. 28.
    Bader RFW, Hernández-Trujillo J, Cortés-Guzmán F (2007) Chemical bonding: from Lewis to atoms in molecules. J Comput Chem 28(1):4–14.  https://doi.org/10.1002/jcc.20528 CrossRefPubMedGoogle Scholar
  29. 29.
    Bader RFW (1985) Atoms in molecules. Acc Chem Res 18(1):9–15.  https://doi.org/10.1021/ar00109a003 CrossRefGoogle Scholar
  30. 30.
    Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Phys Chem 99(24):9747–9754.  https://doi.org/10.1021/j100024a016 CrossRefGoogle Scholar
  31. 31.
    Oliveira BG, Araújo RCMU (2010) A TOPOLOGIA MOLECULAR QTAIM E A DESCRIÇÃO MECÂNICO-QUÂNTICA DE LIGAÇÕES DE HIDROGÊNIO E LIGAÇÕES DE DI-HIDROGÊNIO. Quim Nova 33(5):1155–1162CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Química Inorgânica – Instituto de QuímicaUniversidade Federal FluminenseNiteróiBrazil
  2. 2.Departamento de Química – ICExUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations