Structural Chemistry

, Volume 30, Issue 6, pp 2401–2408 | Cite as

Dinitromethyl, fluorodinitromethyl derivatives of RDX and HMX as high energy density materials: a computational study

  • He LinEmail author
  • Qing Zhu
  • Chuan Huang
  • Dong-Dong Yang
  • Nan Lou
  • Shun-Guan Zhu
  • Hong-Zhen Li
Original Research


The development of high energy density materials (HEDMs) with balanced detonation energy and sensitivity is an urgent task in the current energetic material field. Here, by means of density functional theory (DFT) computations, we systematically exploited 14 cyclic nitramines in the framework of 1,3,5-trinitro-1,3,5-triazine (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) as HEDMs. Our results demonstrate that although the -CF(NO2)2 derivatives exhibit negative heats of formations; all designed compounds have high crystal densities (1.83–2.09 g/cm3), good thermal stability (bond dissociation energy > 143 kJ/mol), and remarkable detonation performance (detonation velocities, 8.59–9.31 km/s). More importantly, compounds A1, B1, C1, and D1 exhibit lower impact sensitivity than 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20). Given these properties, it could be expected that compounds A1, B1, C1, and D1 are potential HEDM candidates with acceptable sensitivity.


Cyclic nitramine High energy density materials Density functional theory Detonation performance Sensitivity 


Funding information

This work is supported by the Nature Science Foundation of Shandong province (Grant Nos. ZR2019BA033, ZR2017PA002, and ZR2016BP09) and the National Nature Science Foundation of China (Grant Nos. 11647159, 11772308, and 21805256).


  1. 1.
    Liu XY, Gao WJ, Sun PP, Su ZY, Chen SP, Wei Q, Xie G, Gao SL (2015) Environmentally friendly high-energy MOFs: crystal structures, thermostability, insensitivity, and remarkable detonation performances. Green Chem 17(2):831–836CrossRefGoogle Scholar
  2. 2.
    KlapÖtke TM, Witkowski TG (2016) 5,5′-bis(2,4,6-trinitrophenyl)-2,2′-bi(1,3,4-oxdiazole) (TKX-55): thermally stable explosive with outstanding properties. ChemplusChem 81(4):357–360CrossRefGoogle Scholar
  3. 3.
    Bian CM, Zhang M, Li C, Zhou ZM (2015) 3-nitro-1-(2H-tetrazol-5-yl)-1H-1,2,4-triazol-5-amine (HANTT) and its energetic salts: highly thermal stable energetic materials with low sensitivity. J Mater Chem A 3(1):163–169CrossRefGoogle Scholar
  4. 4.
    Lin H, Chen JF, Zhu SG, Li HZ, Huang Y (2017) Synthesis, characterization, detonation performance and DFT calculation of HMX/PNO cocrystal explosive. J Energetic Mater 35(1):95–108CrossRefGoogle Scholar
  5. 5.
    Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible? Propellants Explos Pyrotech 41(3):414–425CrossRefGoogle Scholar
  6. 6.
    Lin H, Yang DD, Lou N, Zhu SG, Li HZ (2018) Computational design of high energy density materials with zero oxygen balance: a combination of furazan and piperazine rings. Comput Theor Chem 1139(1):44–49CrossRefGoogle Scholar
  7. 7.
    Wang GL, Lu T, Fan GJ, Yin HQ, Chen FX (2019) Synthesis and properties of insensitive [1,2,4] triazolo [4,3-b]-1,2,4,5-tetrazine explosives. New J Chem 43(4):1663–1666CrossRefGoogle Scholar
  8. 8.
    Qu YY, Zeng Q, Wang J, Ma Q, Li HZ, Li HB, Yang GC (2016) Furazans with azo linkages: stable CHNO energetic materials with high densities, highly energetic performance, and low impact and friction sensitivities. Chem Eur J 22(35):12527–12532CrossRefGoogle Scholar
  9. 9.
    Shang Y, Jin B, Peng RF, Guo ZC, Liu QQ, Zhao J, Zhang QC (2016) Nitrogen-rich energetic salts of 1H,1H’-5,5′-bistetrazole-1,1′-diolate: synthesis, characterization, and thermal behaviors. RSC Adv 6(54):48590–48598CrossRefGoogle Scholar
  10. 10.
    Lin H, Chen JF, Cui YM, Zhang ZJ, Yang DD, Zhu SG, Li HZ (2017) A DFT-D study on structural, electronic, thermodynamic, and mechanical properties of HMX/MPNO cocrystal under high pressure. J Energetic Mater 35(2):157–171CrossRefGoogle Scholar
  11. 11.
    Pan Y, Zhu WH (2017) Theoretical design on a series of novel bicyclic and cage nitramines as high energy density compounds. J Phys Chem A 121(47):9163–9171CrossRefGoogle Scholar
  12. 12.
    Jeong KH (2018) New theoretically predicted RDX- and β-HMX-based high-energy-density molecules. Int J Quantum Chem 118(6):25528CrossRefGoogle Scholar
  13. 13.
    Yang JQ, Wang GX, Gong XD, Zhang JG, Wang YA (2018) High-energy nitramine explosives: a design strategy from linear to cyclic to caged molecules. ACS Omega 3(8):9739–9745CrossRefGoogle Scholar
  14. 14.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. HeadGordon, E.S. Replogle, J.A. Pople, 2009 Gaussian 09, Revision A.01, Gaussian Inc., Wallingford, CT,Google Scholar
  15. 15.
    Kamlet MJ, Jacobs SJ (1968) Chemistry of detonation. I. a simple method for calculation detonation properties of C-H-N-O explosives. J Chem Phys 48(1):23–35CrossRefGoogle Scholar
  16. 16.
    Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107(19):2095–2101CrossRefGoogle Scholar
  17. 17.
    Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory using reduced order perturbation theory. J Chem Phys 127(12):124105CrossRefGoogle Scholar
  18. 18.
    Byrd EFC, Rice BM (2006) Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A 110(3):1005–1013CrossRefGoogle Scholar
  19. 19.
    Politzer P, Murray JS, Grice ME, Desalvo M, Miller E (1997) Calculation of sublimation and solid phase heats of formation. Mol Phys 91(5):923–928CrossRefGoogle Scholar
  20. 20.
    Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) A possible crystal volume factor in the impact sensitivities of some energetic compounds. J Mol Model 16(5):895–901CrossRefGoogle Scholar
  21. 21.
    Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J Phys Chem A 106(9):1770–1783CrossRefGoogle Scholar
  22. 22.
    Zhong K, Liu J, Wang LY, Zhang CY (2019) Influence of atmospheres on the initial thermal decomposition of 1,3,5-trinitro-1,3,5-triazinane: reactive molecular dynamics simulation. J Phys Chem C 123(2):1483–1493CrossRefGoogle Scholar
  23. 23.
    Chen L, Wang HQ, Wang FP, Geng DS, Wu JY, Lu JY (2018) Thermal decomposition mechanisms of 2,2′,4,4′,6,6′-hexanitrostilbene by ReaxFF reactive molecular dynamics simulations. J Phys Chem C 122(34):19309–19318CrossRefGoogle Scholar
  24. 24.
    Xiang D, Zhu WH (2017) Thermal decomposition of isolated and crystal 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane according to ab initio molecular dynamics simulations. RSC Adv 7(14):8347–8356CrossRefGoogle Scholar
  25. 25.
    Kumar D, Tang YX, He CL, Imler GH, Parrish DA, Shreeve JM (2018) Multipurpose energetic materials by shuffling nitro groups on a 3,3′-bipyrazole moiety. Chem Eur J 24(65):17220–17224CrossRefGoogle Scholar
  26. 26.
    Politzer P, Murray JS (2011) Some perspectives on estimating detonation properties of C, H, N, O compounds, cent. Eur J Energ Mater 8(3):209–220Google Scholar
  27. 27.
    Chung GS, Schmidt MW, Gordon MS (2000) An ab initio study of potential energy surfaces for N(8) isomers. J Phys Chem A 104(23):5647–5650CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • He Lin
    • 1
    Email author
  • Qing Zhu
    • 2
  • Chuan Huang
    • 2
  • Dong-Dong Yang
    • 1
  • Nan Lou
    • 1
  • Shun-Guan Zhu
    • 3
  • Hong-Zhen Li
    • 2
  1. 1.School of Chemistry and Materials ScienceLudong UniversityYantaiChina
  2. 2.Institute of Chemical MaterialsChina Academy of Engineering Physics (CAEP)MianyangChina
  3. 3.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations