Structural Chemistry

, Volume 30, Issue 5, pp 1677–1683 | Cite as

QSAR as a random event: criteria of predictive potential for a chance model

  • Andrey A. Toropov
  • Alla P. ToropovaEmail author
Review Article


The CORAL software ( was suggested as a tool to build up quantitative structure–property/activity relationships (QSPRs/QSARs). This software is based on conception “a QSPR/QSAR model should be interpreted as a random event.” This is reflection of fact: different distributions into the training set (substances involved in modeling process) and the validation set (substances, which are not known at the moment of the modeling process) give models with significant dispersion in the statistical quality of the QSPR/QSAR. Results of experiments with the software and possible ways of further improvement of this software are discussed. The most attractive new ways to estimate predictive potential of the CORAL model seem to be the following ones: (i) index of ideality of correlation and (ii) correlation contradiction index. These can be also proposed as criteria of predictive potential for arbitrary QSPR/QSAR.


QSPR/QSAR Monte Carlo method Random event Index of ideality of correlation Correlation contradiction index Validation CORAL software 



The authors express gratitude to the administration of Istituto di Ricerche Farmacologiche Mario Negri for possibility to carry out this research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Doweyko AM (2008). J Comput Aided Mol Des 22(2):81–89CrossRefPubMedGoogle Scholar
  2. 2.
    Johnson SR (2008). J Chem Inf Model 48(1):25–26CrossRefPubMedGoogle Scholar
  3. 3.
    Toropova AP, Toropov AA, Benfenati E, Leszczynska D, Leszczynski J (2015). Bioorg Med Chem 23(6):1223–1230CrossRefPubMedGoogle Scholar
  4. 4.
    Toropov AA, Toropova AP, Puzyn T, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2013). Chemosphere 92(1):31–37CrossRefPubMedGoogle Scholar
  5. 5.
    Duchowicz PR, Bacelo DE, Fioressi SE, Palermo V, Ibezim NE, Romanelli GP (2018). Med Chem Res 27(2):420–428CrossRefGoogle Scholar
  6. 6.
    Fioressi SE, Bacelo DE, Rojas C, Aranda JF, Duchowicz PR (2019). Ecotoxicol Environ Saf 171:47–53CrossRefPubMedGoogle Scholar
  7. 7.
    Rücker C, Rücker G, Meringer M (2007). J Chem Inf Model 47(6):2345–2357CrossRefPubMedGoogle Scholar
  8. 8.
    Consonni V, Ballabio D, Todeschini R (2009). J Chem Inf Model 49(7):1669–1678CrossRefPubMedGoogle Scholar
  9. 9.
    Toropova AP, Toropov AA (2019). Mol Inf 38:1800157CrossRefGoogle Scholar
  10. 10.
    Golbraikh A, Shen M, Xiao Z, Xiao Y-D, Lee K-H, Tropsha A (2003). J Comput Aided Mol Des 17(2–4):241–253CrossRefPubMedGoogle Scholar
  11. 11.
    Gaikwad R, Ghorai S, Amin SA, Adhikari N, Patel T, Das K, Jha T, Gayen S (2018). Toxicol in Vitro 52:23–32CrossRefPubMedGoogle Scholar
  12. 12.
    Simon L, Imane A, Srinivasan KK, Pathak L, Daoud I (2017). Interdiscip Sci Comput Life Sci 9(3):445–458CrossRefGoogle Scholar
  13. 13.
    Ahmadi S, Mardinia F, Azimi N, Qomi M, Balali E (2019). J Mol Struct 1181:305–311CrossRefGoogle Scholar
  14. 14.
    Stoičkov V, Šarić S, Golubović M, Zlatanović D, Krtinić D, Dinić L, Mladenović B, Sokolović D, Veselinović AM (2018). SAR QSAR Environ Res 29(7):503–515CrossRefPubMedGoogle Scholar
  15. 15.
    Achary PGR (2014). SAR QSAR Environ Res 25(1):73–90CrossRefPubMedGoogle Scholar
  16. 16.
    Živković JV, Trutić NV, Veselinović JB, Nikolić GM, Veselinović AM (2015). Comput Biol Med 64:276–282CrossRefPubMedGoogle Scholar
  17. 17.
    Kumar P, Kumar A, Sindhu J (2019). SAR QSAR Environ Res 30(2):63–80CrossRefPubMedGoogle Scholar
  18. 18.
    Begum S, Achary PGR (2015). SAR QSAR Environ Res 26(5):343–361CrossRefPubMedGoogle Scholar
  19. 19.
    Kumar P, Kumar A (2018). Drug Res 68(4):189–195CrossRefGoogle Scholar
  20. 20.
    Ćirić Zdravković S, Pavlović M, Apostlović S, Koraćević G, Šalinger Martinović S, Stanojević D, Sokolović D, Veselinović AM (2019). Comput Biol Chem 79:55–62CrossRefPubMedGoogle Scholar
  21. 21.
    Trinh TX, Choi J-S, Jeon H, Byun H-G, Yoon T-H, Kim J (2018). Chem Res Toxicol 31(3):183–190CrossRefPubMedGoogle Scholar
  22. 22.
    Heidari A, Fatemi MH (2017). J Chin Chem Soc 64(3):289–295CrossRefGoogle Scholar
  23. 23.
    Ahmadi S, Akbari A (2018). SAR QSAR Environ Res 29(11):895–909CrossRefPubMedGoogle Scholar
  24. 24.
    Bhargava S, Adhikari N, Amin SA, Das K, Gayen S, Jha T (2017). SAR QSAR Environ Res 28(12):973–990CrossRefPubMedGoogle Scholar
  25. 25.
    Islam MA, Pillay TS (2016). Chemom Intell Lab Syst 153:67–74CrossRefGoogle Scholar
  26. 26.
    Halder AK (2018). SAR QSAR Environ Res 29(11):911–933CrossRefPubMedGoogle Scholar
  27. 27.
    Golubović M, Lazarević M, Zlatanović D, Krtinić D, Stoičkov V, Mladenović B, Milić DJ, Sokolović D, Veselinović AM (2018). Comput Biol Chem 75:32–38CrossRefPubMedGoogle Scholar
  28. 28.
    Stoičkov V, Stojanović D, Tasić I, Šarić S, Radenković D, Babović P, Sokolović D, Veselinović AM (2018). Struct Chem 29(2):441–449CrossRefGoogle Scholar
  29. 29.
    Veselinović JB, Đorđević V, Bogdanović M, Morić I, Veselinović AM (2018). Struct Chem 29(2):541–551CrossRefGoogle Scholar
  30. 30.
    Amin SA, Bhargava S, Adhikari N, Gayen S, Jha T (2018). J Biomol Struct Dyn 36(3):590–608CrossRefPubMedGoogle Scholar
  31. 31.
    Zdravković M, Antović A, Veselinović JB, Sokolović D, Veselinović AM (2018). Talanta 178:656–662CrossRefPubMedGoogle Scholar
  32. 32.
    Kumar A, Chauhan S (2017). SAR QSAR Environ Res 28(3):179–197CrossRefPubMedGoogle Scholar
  33. 33.
    Kumar A, Chauhan S (2018). Future Med Chem 10(13):1603–1622CrossRefPubMedGoogle Scholar
  34. 34.
    Amata E, Marrazzo A, Dichiara M, Modica MN, Salerno L, Prezzavento O, Nastasi G, Rescifina A, Romeo G, Pittalà V (2017). ChemMedChem 12(22):1873–1881CrossRefPubMedGoogle Scholar
  35. 35.
    Rescifina A, Floresta G, Marrazzo A, Parenti C, Prezzavento O, Nastasi G, Dichiara M, Amata E (2017). Eur J Pharm Sci 106:94–101CrossRefPubMedGoogle Scholar
  36. 36.
    Sokolović D, Ranković J, Stanković V, Stefanović R, Karaleić S, Mekić B, Milenković V, Kocić J, Veselinović AM (2017). Med Chem Res 26(4):796–804CrossRefGoogle Scholar
  37. 37.
    Kumar A, Chauhan S (2017). Arch Pharm 350(1):e1600268CrossRefGoogle Scholar
  38. 38.
    Kumar A, Chauhan S (2017). Drug Res 67(3):156–162Google Scholar
  39. 39.
    Sokolović D, Aleksić D, Milenković V, Karaleić S, Mitić D, Kocić J, Mekić B, Veselinović JB, Veselinović AM (2016). Med Chem Res 25(12):2989–2998CrossRefGoogle Scholar
  40. 40.
    Sokolović D, Stanković V, Toskić D, Lilić L, Ranković G, Ranković J, Nedin-Ranković G, Veselinović AM (2016). Struct Chem 27(5):1511–1519CrossRefGoogle Scholar
  41. 41.
    Toropova MA (2017). Curr Drug Metab 18(12):1123–1131CrossRefPubMedGoogle Scholar
  42. 42.
    Mondal C, Halder AK, Adhikari N, Saha A, Saha KD, Gayen S, Jha T (2015). Eur J Med Chem 90:860–875CrossRefPubMedGoogle Scholar
  43. 43.
    Veselinović JB, Nikolić GM, Trutić NV, Živković JV, Veselinović AM (2015). SAR QSAR Environ Res 26(6):449–460CrossRefPubMedGoogle Scholar
  44. 44.
    Li Q, Ding X, Si H, Gao H (2014). Chemom Intell Lab Syst 139:132–138CrossRefGoogle Scholar
  45. 45.
    Achary PGR (2014). SAR QSAR Environ Res 25(6):507–526CrossRefPubMedGoogle Scholar
  46. 46.
    Garro Martinez JC, Duchowicz PR, Estrada MR, Zamarbide GN, Castro EA (2011). Int J Mol Sci 12(12):9354–9368CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Toropov AA, Toropova AP (2019). Toxicol Mech Methods 29:43–52CrossRefPubMedGoogle Scholar
  48. 48.
    Ojha PK, Mitra I, Das RN, Roy K (2011). Chemom Intell Lab Syst 107(1):194–205CrossRefGoogle Scholar
  49. 49.
    I-Kuei Lin L (1989). Biometrics 45(1):255–268CrossRefPubMedGoogle Scholar
  50. 50.
    Toropov AA, Toropova AP (2017). Mutat Res Genet Toxicol Environ Mutagen 819:31–37CrossRefGoogle Scholar
  51. 51.
    Toropov AA, Carbó-Dorca R, Toropova AP (2018). Struct Chem 29(1):33–38CrossRefGoogle Scholar
  52. 52.
    Toropova AP, Toropov AA (2019). J Mol Struct 1182:141–149CrossRefGoogle Scholar
  53. 53.
    Toropov AA, Raška I, Toropova AP, Raškova M, Veselinović AM, Veselinović JB (2019). Sci Total Environ 659:1387–1394CrossRefPubMedGoogle Scholar
  54. 54.
    Toropova AP, Toropov AA, Veselinović AM, Veselinović JB, Leszczynska D, Leszczynski J (2019). Mol Cell Biochem 452(1–2):133–140CrossRefPubMedGoogle Scholar
  55. 55.
    Basak SC, Mills DR, Balaban AT, Gute BD (2001). J Chem Inf Comput Sci 41(3):671–678CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science (Dipartimento: Ambiente e Salute)Istituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly

Personalised recommendations