Advertisement

Structural Chemistry

, Volume 30, Issue 6, pp 2159–2166 | Cite as

The conformation of biliverdin in dimethyl sulfoxide: implications for the coordination with copper

  • Milena S. Dimitrijević
  • Milan ŽižićEmail author
  • Mario Piccioli
  • Jelena Bogdanović Pristov
  • Ivan SpasojevićEmail author
Original Research
  • 146 Downloads

Abstract

Biliverdin (BV) structure was analyzed by using NMR techniques and unrestricted density function theory simulations to explain the incapacity of BV to build coordination complex(es) with Cu2+ in dimethyl sulfoxide, which was confirmed by UV-Vis, EPR and NMR spectroscopy. NMR showed that N atoms are protonated in all four pyrrole rings. The structure is stabilized by two hydrogen bonds between NH moieties and carbonyl oxygens from opposite terminal pyrrole rings, and by the bending of propionyl chain with carboxyl group out of the plain toward central position of BV. The simulations of deprotonated BV, which builds copper complexes in water and chloroform as described previously, showed a different conformation and organization of hydrogen bonds. Taking into account that deprotonation represents a critical step in coordinate bonds formation, the protonation of an additional N atom may represent a key difference between the interactions of BV with copper in different solvents.

Keywords

Biliverdin Copper Hydrogen bonds NOESY UDFT 

Notes

Acknowledgments

We are thankful to Prof. Miloš Mojović at EPR Laboratory, Faculty of Physical Chemistry, University of Belgrade for recording EPR spectra and to Ljiljana Stojanović from School of Biological and Chemical Sciences, Queen Mary University of London, for her great help in calculating and discussing theoretical results obtained using the UDFT.

Funding information

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (III43010). This article is based upon work from COST Action CA15133 FesBioNet, supported by COST (European Cooperation in Science and Technology).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1354_MOESM1_ESM.pdf (500 kb)
ESM 1 (PDF 499 kb)

References

  1. 1.
    Korać J, Todorović N, Zakrzewska J, Žižić M, Spasojević I (2018) The conformation of epinephrine in polar solvents: an NMR study. Struct Chem 29:1533–1541CrossRefGoogle Scholar
  2. 2.
    Watermann T, Elgabarty H, Sebastiani D (2014) Phycocyanobilin in solution - a solvent triggered molecular switch. Phys Chem Chem Phys 16:6146–6152CrossRefGoogle Scholar
  3. 3.
    Sailofsky BM, Brown GR (1987) Solvent effects on the photoisomerization of bilirubin. J Chem 65:1908–1916Google Scholar
  4. 4.
    Nam J, Lee Y, Yang Y, Jeong S, Kim W, Yoo JW, Moon JO, Lee C, Chung HY, Kim MS, Jon S, Jung Y (2018) Is it worth expending energy to convert biliverdin into bilirubin? Free Radic Biol Med 124:232–240CrossRefGoogle Scholar
  5. 5.
    Dimitrijevic MS, Bogdanović Pristov J, Žižić M, Stanković DM, Bajuk-Bogdanović D, Stanić M, Spasić S, Hagen W, Spasojević I (2019) Biliverdin-copper complex at physiological pH. Dalton Trans.  https://doi.org/10.1039/c8dt04724c CrossRefGoogle Scholar
  6. 6.
    Krois D, Lehner H (1993) Helically fixed chiral bilirubins and biliverdins: a new insight into the conformational, associative and dynamic features of linear tetrapyrrols. J Chem Soc Perkin Trans 2:1351–1360CrossRefGoogle Scholar
  7. 7.
    Lightner DA, Holmes DL, McDonagh AF (1996) On the acid dissociation constants of bilirubin and biliverdin. pKa values from 13C NMR spectroscopy. J Biol Chem 271:2397–2405CrossRefGoogle Scholar
  8. 8.
    Lightner DA, Holmes DL, McDonagh AF (1996) Dissociation constants of water-insoluble carboxylic acids by 13C-NMR. pKas of mesobiliverdin-XIIIα and mesobilirubin-XIIIα. Experientia 52:639–642CrossRefGoogle Scholar
  9. 9.
    Sugishima M, Sakamoto H, Higashimoto Y, Noguchi M, Fukuyama K (2003) Crystal structure of rat heme oxygenase-1 in complex with biliverdin-iron chelate. Conformational change of the distal helix during the heme cleavage reaction. J Biol Chem 278:32352–32358CrossRefGoogle Scholar
  10. 10.
    Reichardt C (2003) Solvents and solvent effects in organic chemistry. Wiley-VCH Verlag GmbH & Co, WeinheimGoogle Scholar
  11. 11.
    Sóvágó I, Harman B, Kolozsvári I, Matyuska F (1985) Complex-formation and redox reactions of bilirubin and biliverdin with zinc(II), cadmium(II) and copper(II) ions. Inorg Chim Acta 106:181–186CrossRefGoogle Scholar
  12. 12.
    Berlec A, Štrukelj B (2014) A high-throughput biliverdin assay using infrared fluorescence. J Vet Diagn Investig 26:521–526CrossRefGoogle Scholar
  13. 13.
    Shang L, Rockwell NC, Martin SS, Lagarias JC (2010) Biliverdin amides reveal roles for propionate side chains in Bilin reductase recognition and in holophytochrome assembly and photoconversion. Biochemistry 49:6070–6082CrossRefGoogle Scholar
  14. 14.
    Mukerjee P, Ostrow JD (1998) Effects of added dimethylsulfoxide on pKa values of uncharged organic acids and pH values of aqueous buffers. Tetrahedron Lett 39:423–426CrossRefGoogle Scholar
  15. 15.
    McDonagh AF, Phimster A, Boiadjiev SE, Lightner DA (1999) Dissociation constants of carboxylic acids by 13C-NMR in DMSO/water. Tetrahedron Lett 40:8515–8518CrossRefGoogle Scholar
  16. 16.
    Rubino JT, Berryhill WS (1986) Effects of solvent polarity on the acid dissociation constants of benzoic acids. J Pharm Sci 75:182–186CrossRefGoogle Scholar
  17. 17.
    Kurtin WE, Enz J, Dunsmoor C, Evans N, Lightner DA (2000) Acid dissociation constants of bilirubin and related carboxylic acid compounds in bile salt solutions. Arch Biochem Biophys 381:83–91CrossRefGoogle Scholar
  18. 18.
    Ostrow JD, Celic L, Mukerjee P (1988) Molecular and micellar associations in the pH-dependent stable and metastable dissolution of unconjugated bilirubin by bile salts. J Lipid Res 29:335–348PubMedGoogle Scholar
  19. 19.
    Li M, Xiao Z, Xiang H, Lu Z (1997) Unusual solvent effect on absorption spectra of nonplanar dodecaphenylporphyrins with different substituents. Spectrochim Acta A Mol Biomol Spectrosc 53:1691–1695CrossRefGoogle Scholar
  20. 20.
    Moussa F, Kanoute G, Herrenknecht C, Levillain P, Trivin F (1988) Electrochemical oxidation of bilirubin and biliverdin in dimethyl sulfoxide. Anal Chem 60:1179–1185CrossRefGoogle Scholar
  21. 21.
    Lu G, Lin W, Fang Y, Zhu W, Ji X, Ou Z (2011) Synthesis and electrochemical properties of meso-phenyl substituted copper corroles. Solvent effect on copper oxidation state. J Porphyrins Phthalocyanines 15:1265–1274CrossRefGoogle Scholar
  22. 22.
    Balch AL, Mazzanti M, Noll BC, Olmstead MM (1993) Geometric and electronic structure and dioxygen sensitivity of the copper complex of octaethylbilindione, a biliverdin analog. J Am Chem Soc 115:12206–12207CrossRefGoogle Scholar
  23. 23.
    Dorazio SJ, Halepas S, Bruhn T, Fleming KM, Zeller M, Brückner C (2015) Singlet oxygen oxidation products of biliverdin IXa dimethyl ester. Bioorg Med Chem 23:7671–7675CrossRefGoogle Scholar
  24. 24.
    Feliz M, Ribó JM, Salgado A, Trull FR, Vallès MA (1989) On the 1H NMR spectra of biliverdins with free propionic acid substituents. Mönatsh Chem 120:445–451CrossRefGoogle Scholar
  25. 25.
    Kaplan D, Navon G (1982) Studies of the conformation of bilirubin and its dimethyl ester in dimethyl sulphoxide solutions by nuclear magnetic resonance. Biochem J 201:605–613CrossRefGoogle Scholar
  26. 26.
    Pretsch E, Bühlmann P, Badertscher M (2009) Structure determination of organic compounds. Springer-Verlag, BerlinGoogle Scholar
  27. 27.
    Bates RG (1973) Determination of pH: theory and practice. Wiley & Sons, New YorkGoogle Scholar
  28. 28.
    Hathaway BJ, Billing DE (1970) The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord Chem Rev 5:143–207CrossRefGoogle Scholar
  29. 29.
    Garribba E, Micera G (2006) The determination of the geometry of Cu(II) complexes. J Chem Educ 83:1229–1232CrossRefGoogle Scholar
  30. 30.
    Elleb M, Meullemeestre J, Schwing-Weill MJ, Vierling F (1982) Spectrophotometric study of copper(II) chloride complexes in propylene carbonate and in dimethyl sulfoxide. Inorg Chem 21:1477–1483CrossRefGoogle Scholar
  31. 31.
    Willett RD, Chang K (1970) The crystal structure of copper(II) chloride bis(dimethylsulphoxide). Inorg Chim Acta 4:447–451CrossRefGoogle Scholar
  32. 32.
    Kozlowski H, Kowalik-Jankowska T, Jeżowska-Bojczuk M (2005) Chemical and biological aspects of Cu2+ interactions with peptides and aminoglycosides. Coord Chem Rev 249:2323–2334CrossRefGoogle Scholar
  33. 33.
    Meng R, Becker J, Lin FT, Saxena S, Weber SG (2005) Binding of copper(II) to thyrotropin-releasing hormone (TRH) and its analogs. Inorg Chim Acta 358:2933–2942CrossRefGoogle Scholar
  34. 34.
    Mukerjee P, Ostrow JD, Tiribelli C (2002) Low solubility of unconjugated bilirubin in dimethylsulfoxide--water systems: implications for pKa determinations. BMC Biochem 3:17CrossRefGoogle Scholar
  35. 35.
    Nogales D, Lightner DA (1995) On the structure of bilirubin in solution. J Biol Chem 270:73–77CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Life Sciences, Institute for Multidisciplinary ResearchUniversity of Belgrade Kneza Višeslava 1BelgradeSerbia
  2. 2.Center for Magnetic ResonanceUniversity of FlorenceFlorenceItaly

Personalised recommendations